了解model.summary Keras

时间:2017-08-08 06:56:54

标签: python tensorflow keras

我试图了解Keras中的model.summary()。我有以下卷积神经网络。第一个卷积的值是:

conv2d_4 (Conv2D)            (None, 148, 148, 16)      448 

148和448来自哪里?

代码

image_input = layers.Input(shape=(150, 150, 3))
x = layers.Conv2D(16, 3, activation='relu')(image_input)

x = layers.MaxPooling2D(2)(x)
x = layers.Conv2D(32, 3, activation='relu')(x)

x = layers.MaxPooling2D(2)(x)
x = layers.Conv2D(64, 3, activation='relu')(x)

x = layers.MaxPooling2D(2)(x)
x = layers.Flatten()(x)
x = layers.Dense(512, activation='relu')(x)
output = layers.Dense(1, activation='sigmoid')(x)

# Keras Model definition
# input = input feature map
# output = input feature map + stacked convolution/maxpooling layers + fully connected layer + sigmoid output layer
model = Model(image_input, output)
model.summary()

输出

Layer (type)                 Output Shape              Param #   
=================================================================
input_2 (InputLayer)         (None, 150, 150, 3)       0         
_________________________________________________________________
conv2d_4 (Conv2D)            (None, 148, 148, 16)      448       
_________________________________________________________________
max_pooling2d_4 (MaxPooling2 (None, 74, 74, 16)        0         
_________________________________________________________________
conv2d_5 (Conv2D)            (None, 72, 72, 32)        4640      
_________________________________________________________________
max_pooling2d_5 (MaxPooling2 (None, 36, 36, 32)        0         
_________________________________________________________________
conv2d_6 (Conv2D)            (None, 34, 34, 64)        18496     
_________________________________________________________________
max_pooling2d_6 (MaxPooling2 (None, 17, 17, 64)        0         
_________________________________________________________________
flatten_1 (Flatten)          (None, 18496)             0         
_________________________________________________________________
dense_1 (Dense)              (None, 512)               9470464   
_________________________________________________________________
dense_2 (Dense)              (None, 1)                 513     

1 个答案:

答案 0 :(得分:1)

Keras documentation,您可以看到填充是default=valid,因此没有填充,并且步幅大小为1.那么您的输出形状显然是148 x 148。

要计算这个,你可以使用这个公式:

O = (W - K + 2P)/S + 1

其中O是输出高度/宽度,W是输入高度/宽度,K是滤波器大小,P是填充,S是步幅大小。

关于第二个参数,你有一个16的特征映射,你的内核大小是3 x 3,所以你有16 x(3 x 3),这是144.那么你有三个颜色通道,所以144 x 3 = 432然后你需要添加16个偏差,这使得448;)希望这有帮助!