以下是我正在运行的代码:
def competitor_stock_data_report():
import datetime
import pandas_datareader.data as web
date_time = datetime.datetime.now()
date = date_time.date()
stocklist = ['LAZ','AMG','BEN','LM','EVR','GHL','HLI','MC','PJT','MS','GS','JPM','AB']
start = datetime.datetime(date.year-1, date.month, date.day-1)
end = datetime.datetime(date.year, date.month, date.day-1)
for x in stocklist:
df = web.DataReader(x, 'google', start, end)
print(df)
print(df.loc[df['Date'] == start]['Close'].values)
问题出在最后一行。如何提取指定“关闭”值的日期的具体值?
Open High Low Close Volume
Date
2016-08-02 35.22 35.25 33.66 33.75 861111
2016-08-03 33.57 34.72 33.42 34.25 921401
2016-08-04 33.89 34.22 33.77 34.07 587016
2016-08-05 34.55 34.94 34.31 34.35 463317
2016-08-08 34.54 34.75 34.31 34.74 958230
2016-08-09 34.68 35.12 34.64 34.87 732959
我想以33.75
为例,但日期是动态变化的。
有什么建议吗?
答案 0 :(得分:3)
推荐
df.at[df.index[-1], 'Close']
df.iat[-1, df.columns.get_loc('Close')]
df.loc[df.index[-1], 'Close']
df.iloc[-1, df.columns.get_loc('Close')]
不打算作为公共API,但有效
df.get_value(df.index[-1], 'Close')
df.get_value(-1, df.columns.get_loc('Close'), takeable=True)
不推荐,链式索引
可能会有更多,但我真的需要添加它们
df.iloc[-1].at['Close']
df.loc[:, 'Close'].iat[-1]
所有收益
34.869999999999997
答案 1 :(得分:2)
IMO是获取第一行中列值的最简单方法:
In [40]: df
Out[40]:
Open High Low Close Volume
Date
2016-08-03 767.18 773.21 766.82 773.18 1287421
2016-08-04 772.22 774.07 768.80 771.61 1140254
2016-08-05 773.78 783.04 772.34 782.22 1801205
2016-08-08 782.00 782.63 778.09 781.76 1107857
2016-08-09 781.10 788.94 780.57 784.26 1318894
... ... ... ... ... ...
2017-07-27 951.78 951.78 920.00 934.09 3212996
2017-07-28 929.40 943.83 927.50 941.53 1846351
2017-07-31 941.89 943.59 926.04 930.50 1970095
2017-08-01 932.38 937.45 929.26 930.83 1277734
2017-08-02 928.61 932.60 916.68 930.39 1824448
[252 rows x 5 columns]
In [41]: df.iat[0, df.columns.get_loc('Close')]
Out[41]: 773.17999999999995
最后一行:
In [42]: df.iat[-1, df.columns.get_loc('Close')]
Out[42]: 930.38999999999999