我正在尝试使用pandas_datareader捕获库存数据。给定少量的股票代号,只需手动编写每个DataReader调用的脚本,然后合并结果就很容易了。但是,如果列表的长度增加到更多,则必须有一种更简单的方法来迭代该过程。
import pandas_datareader.data as web
import pandas as pd
symbols = ['AMZN','AAPL','MSFT','NFLX','GOOGL']
for i in symbols:
print(i)
dfAMZN = web.DataReader('AMZN','yahoo')
dfAMZN['Symbol'] = 'AMZN'
dfAMZN['Date'] = dfAMZN.index
dfAAPL = web.DataReader('AAPL','yahoo')
dfAAPL['Symbol'] = 'AAPL'
dfAAPL['Date'] = dfAAPL.index
dfMSFT = web.DataReader('MSFT','yahoo')
dfMSFT['Symbol'] = 'MSFT'
dfMSFT['Date'] = dfMSFT.index
dfNFLX = web.DataReader('NFLX','yahoo')
dfNFLX['Symbol'] = 'NFLX'
dfNFLX['Date'] = dfNFLX.index
dfGOOGL = web.DataReader('GOOGL','yahoo')
dfGOOGL['Symbol'] = 'GOOGL'
dfGOOGL['Date'] = dfGOOGL.index
frames = [dfAMZN, dfAAPL, dfMSFT, dfNFLX, dfGOOGL]
dfStocks = pd.concat(frames)
有没有一种方法可以遍历符号列表并执行以下步骤,而不仅仅是打印i?
答案 0 :(得分:1)
将list comprehension
与assign
一起用于新列:
symbols = ['AMZN','AAPL','MSFT','NFLX','GOOGL']
frames = [web.DataReader(i,'yahoo').assign(Symbol = i, Date = lambda x: x.index)
for i in symbols]
dfStocks = pd.concat(frames)
另一种选择:
symbols = ['AMZN','AAPL','MSFT','NFLX','GOOGL']
frames = []
for i in symbols:
df = web.DataReader(i,'yahoo')
df['Symbol'] = i
df['Date'] = df.index
frames.append(df)
dfStocks = pd.concat(frames)