我正在运行一个运行流畅的TF的NN模型(此代码可以在https://pythonprogramming.net/找到)。我想添加几行来计算真假的正/负,以及精确度和召回率。我尝试了许多求和函数,但Python中的对象对我来说并不熟悉。我无法运行sk
,因为我想使用TF,这限制了我使用的Python版本。谢谢你的帮助。
import pandas as pd
import tensorflow as tf
import numpy as np
import random
from random import shuffle
train_x = pd.read_csv('train_x.csv')
train_y = pd.read_csv('train_y.csv')
test_x = pd.read_csv('test_x.csv')
test_y = pd.read_csv('test_y.csv')
n_nodes_hl1 = 30
n_nodes_hl2 = 30
n_nodes_hl3 = 30
n_classes = 2
batch_size = 2000
x = tf.placeholder('float', [None, 61])
y = tf.placeholder('float')
def neural_network_model(data):
hidden_1_layer = {'weights':tf.Variable(tf.random_normal([61, n_nodes_hl1])),
'biases':tf.Variable(tf.random_normal([n_nodes_hl1]))}
hidden_2_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
'biases':tf.Variable(tf.random_normal([n_nodes_hl2]))}
hidden_3_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
'biases':tf.Variable(tf.random_normal([n_nodes_hl3]))}
output_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl3, n_classes])),
'biases':tf.Variable(tf.random_normal([n_classes])),}
l1 = tf.add(tf.matmul(data,hidden_1_layer['weights']), hidden_1_layer['biases'])
l1 = tf.nn.relu(l1)
l2 = tf.add(tf.matmul(l1,hidden_2_layer['weights']), hidden_2_layer['biases'])
l2 = tf.nn.relu(l2)
l3 = tf.add(tf.matmul(l2,hidden_3_layer['weights']), hidden_3_layer['biases'])
l3 = tf.nn.relu(l3)
output = tf.matmul(l3,output_layer['weights']) + output_layer['biases']
return output
def train_neural_network(x):
prediction = neural_network_model(x)
cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y) )
optimizer = tf.train.AdamOptimizer().minimize(cost)
hm_epochs = 10
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(hm_epochs):
epoch_loss = 0
i = 0
while i < len(train_x):
start = i
end = i + batch_size
batch_x = np.array(train_x[start:end])
batch_y = np.array(train_y[start:end])
_, c = sess.run([optimizer, cost], feed_dict={x: batch_x, y: batch_y})
epoch_loss += c
i += batch_size
print('Epoch', epoch, 'completed out of',hm_epochs,'loss:',epoch_loss)
correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
print('Accuracy:',accuracy.eval({x:test_x, y:test_y}))
train_neural_network(x)
我尝试了以下内容:
argmax_prediction = tf.argmax(prediction, 1)
argmax_y = tf.argmax(y, 1)
TP = tf.count_nonzero(argmax_prediction * argmax_y, dtype=tf.float32)
TN = tf.count_nonzero((argmax_prediction - 1) * (argmax_y - 1), dtype=tf.float32)
FP = tf.count_nonzero(argmax_prediction * (argmax_y - 1), dtype=tf.float32)
FN = tf.count_nonzero((argmax_prediction - 1) * argmax_y, dtype=tf.float32)
precision = TP / (TP + FP)
recall = TP / (TP + FN)
print ("Precision", precision)
print ("Recall", recall)
我得到了
Precision Tensor("truediv:0", dtype=float32)
Recall Tensor("truediv_1:0", dtype=float32)
答案 0 :(得分:2)
由于您要将Precision
和recall
设为tensor
,因此您需要使用tensorflow会话来获取值
你是如何得到预测的?
prediction = some_function(x)
# x is your input placeholder for prediction
# y is the input placeholder for ground-truths
sess=tf.Session()
precision_, recall_ = sess.run([precision, recall], feed_dict={x: input, y: ground_truths})