Python和openCV:HOG描述符检测多字节返回负边界框

时间:2017-08-01 22:25:47

标签: python python-2.7 opencv svm detection

我正在使用OpenCV的HOG探测器来探测视频中的行人。但是它的detectMultiScale()返回的边界框有一个负值。到目前为止,我无法在互联网上找到任何有用或有用的东西来理解和解决这个问题。我甚至不知道为什么会出现这个问题。这是输出。

RECTS:  [[183  -6  68 137]
[ 76  -7  76 152]]
WEIGHTS:  [[ 1.21099767]
[ 0.37004868]]

继承我的代码:

hog = cv2.HOGDescriptor()
hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())

webcam = cv2.VideoCapture ('/home/irum/Desktop/Test-Videos/pedistrianTestVideoLONG.mp4')




while True:
    # read each frame
    ret, frame = webcam.read()
    # resize it
    image = imutils.resize(frame, width=min(300, frame.shape[1]))
    orig = image.copy()

    # detect people in the frame
    (rects, weights) = hog.detectMultiScale(image, winStride=(4, 4),
        padding=(8, 8), scale=1.1)
    print('RECTS: ',rects)
    print('WEIGHTS: ',weights)
    print('LENGTH: ',len(rects))

    # draw the original bounding boxes
    #for (x, y, w, h) in rects:
    for i in range(len(rects)):

        body_i = rects[i]
        print('BODY_I: ',body_i)

        (x, y, w, h) = [v * 1 for v in body_i]
        print ('DETECTION (x, y, w, h)',x, y, w, h)

        cv2.rectangle(orig, (x, y), (x + w, y + h), (0, 0, 255), 2)

        # apply non-maxima suppression
        rects = np.array([[x, y, x + w, y + h] for (x, y, w, h) in rects])
        pick = non_max_suppression(rects, probs=None, overlapThresh=0.65)

        # draw the final bounding boxes

        for i in range(len(pick)):

            g += 1 

            body_p = pick[i]

            (xA, yA, xB, yB) = [int(v * 1) for v in body_p]
            print('DETECTION NMS (xA, yA, xB, yB)', xA, yA, xB, yB)

            # rect on scaled image
            cv2.rectangle(image, (xA, yA), (xB, yB), (0, 255, 0), 2) 

            # rects to map on original frame
            (x1, y1, w1, h1) = [int(v * 4.28) for v in body_p]
            print('(x1, y1, w1, h1) ' ,x1, y1, w1, h1)

            cv2.rectangle(frame, (x1, y1), (w1, h1), (0, 45, 255), 2)

            # Crop body from Original frame
            body_big = frame[y1:h1, x1:w1]

            print('DISPLAY')
            cv2.imshow("BODY", body_big)

            # Save body
            save_body_path = '/home/irum/Desktop/pedestrian-detection/BIG_BODY' 

            cur_date = (time.strftime("%Y-%m-%d"))
            cur_time = (time.strftime("%H:%M:%S"))
            new_pin =cur_date+"-"+cur_time
            filename1 = 'BIG'
            filename2 = str(g)+str(filename1)+'-'+str(new_pin)
            #print ("IMAGE TO SEND: ",filename2)

            sampleFile = ('%s/%s.jpg' % (save_body_path, filename2))
            #print ("sampleFile",sampleFile)

            cv2.imwrite('%s/%s.jpg' % (save_body_path, filename2), body_big)
            #pyplot.imsave('%s.jpg' % (sampleFile), body_big)



    # show the output images
    cv2.imshow("Before NMS", orig)
    cv2.imshow("After NMS", image)
    cv2.imshow("BIG BODY", frame)
    # cv2.imshow("FACE", body_big2)
    key = cv2.waitKey(10)
    if key == 27:
        break

1 个答案:

答案 0 :(得分:1)

在互联网上尝试几乎所有内容后,当我无法在任何地方找到答案时,我自己开始分析这个问题并找到解决方案。

(rects, weights) = hog.detectMultiScale(image, winStride=(4, 4),
        padding=(0, 0), scale=1.1)

我将参数padding更改为(0,0),它解决了我的问题。而且我认为问题是因为当由于填充而在框架的角落处检测到身体时,它想要在裁剪时从框架的侧面占据一些空间但是没有任何可用的空间因此它给了我负面的