numpy和tensorflow执行的数学函数之间是否有任何真正的区别。例如,指数函数,还是最大函数?
我注意到的唯一区别是tensorflow需要输入张量,而不是numpy数组。 这是唯一的区别,并且函数的结果没有差异吗?
答案 0 :(得分:4)
如前所述,存在性能差异。 TensorFlow的优势在于它可以在CPU或GPU上运行,因此如果你有一个支持CUDA的GPU,TensorFlow可能会快得多。您可以在网上找到几个不同比较的基准测试,也可以找到其他软件包,如Numba或Theano。
但是,我认为你在谈论NumPy和TensorFlow操作是否完全相同。答案是基本上是的,也就是说,操作的含义是相同的。但是,由于它们是完全独立的库,具有针对所有内容的不同实现,因此您会发现结果中存在细微差别。以此代码为例(TensorFlow 1.2.0,NumPy 1.13.1):
# Force TensorFlow to run on CPU only
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
import numpy as np
import tensorflow as tf
# float32 NumPy array
a = np.arange(100, dtype=np.float32)
# The same array with the same dtype in TensorFlow
a_tf = tf.constant(a, dtype=tf.float32)
# Square root with NumPy
sqrt = np.sqrt(a)
# Square root with TensorFlow
with tf.Session() as sess:
sqrt_tf = sess.run(tf.sqrt(a_tf))
你会期望从两者得到几乎相同的输出,我的意思是,平方根毕竟不是一个非常复杂的操作。但是,我在计算机上打印这些数组:
print(sqrt)
>>> array([ 0. , 1. , 1.41421354, 1.73205078, 2. ,
2.23606801, 2.44948983, 2.64575124, 2.82842708, 3. ,
3.1622777 , 3.31662488, 3.46410155, 3.60555124, 3.7416575 ,
3.87298346, 4. , 4.12310553, 4.2426405 , 4.35889912,
4.47213602, 4.5825758 , 4.69041586, 4.79583168, 4.89897966,
5. , 5.09901953, 5.19615221, 5.29150248, 5.38516474,
5.47722578, 5.56776428, 5.65685415, 5.74456263, 5.83095169,
5.91608 , 6. , 6.08276272, 6.16441393, 6.24499798,
6.3245554 , 6.40312433, 6.48074055, 6.55743837, 6.63324976,
6.70820379, 6.78233004, 6.85565472, 6.92820311, 7. ,
7.07106781, 7.14142847, 7.21110249, 7.28010988, 7.34846926,
7.41619825, 7.48331499, 7.54983425, 7.6157732 , 7.68114567,
7.74596691, 7.81024981, 7.8740077 , 7.93725395, 8. ,
8.06225777, 8.1240387 , 8.18535233, 8.24621105, 8.30662346,
8.36660004, 8.42614937, 8.48528099, 8.54400349, 8.60232544,
8.66025448, 8.71779823, 8.77496433, 8.83176041, 8.88819408,
8.94427204, 9. , 9.05538559, 9.11043358, 9.1651516 ,
9.21954441, 9.2736187 , 9.32737923, 9.38083172, 9.43398094,
9.48683262, 9.53939247, 9.59166336, 9.64365101, 9.69536018,
9.7467947 , 9.79795933, 9.84885788, 9.89949512, 9.94987392], dtype=float32)
print(sqrt_tf)
>>> array([ 0. , 0.99999994, 1.41421342, 1.73205078, 1.99999988,
2.23606801, 2.44948959, 2.64575124, 2.82842684, 2.99999976,
3.1622777 , 3.31662488, 3.46410155, 3.60555077, 3.74165726,
3.87298322, 3.99999976, 4.12310553, 4.2426405 , 4.35889864,
4.47213602, 4.58257532, 4.69041538, 4.79583073, 4.89897919,
5. , 5.09901857, 5.19615221, 5.29150248, 5.38516474,
5.47722483, 5.56776428, 5.65685368, 5.74456215, 5.83095121,
5.91607952, 5.99999952, 6.08276224, 6.16441393, 6.24499846,
6.3245554 , 6.40312433, 6.48074055, 6.5574379 , 6.63324976,
6.70820427, 6.78233004, 6.85565472, 6.92820311, 6.99999952,
7.07106733, 7.14142799, 7.21110153, 7.28010893, 7.34846973,
7.41619825, 7.48331451, 7.54983425, 7.61577368, 7.68114567,
7.74596643, 7.81025028, 7.8740077 , 7.93725395, 7.99999952,
8.06225681, 8.12403774, 8.18535233, 8.24621105, 8.30662346,
8.36660004, 8.42614937, 8.48528099, 8.54400253, 8.60232449,
8.66025352, 8.71779728, 8.77496433, 8.83176041, 8.88819408,
8.94427204, 8.99999905, 9.05538464, 9.11043262, 9.16515064,
9.21954441, 9.27361774, 9.32737923, 9.38083076, 9.43398094,
9.48683357, 9.53939152, 9.59166145, 9.64365005, 9.69535923,
9.7467947 , 9.79795837, 9.84885788, 9.89949417, 9.94987392], dtype=float32)
所以,好吧,它是相似的,但有明显的差异。例如,TensorFlow甚至无法使1,4或9的平方根正确。如果你在GPU上运行它可能会得到不同的结果(由于GPU内核不同于CPU内核和对NVIDIA实现的CUDA例程的依赖,NVIDIA是该领域的另一个参与者)。
我的印象(虽然我可能错了)是TensorFlow更愿意牺牲一点精度来换取性能(考虑到它的典型用例,这是有意义的)。我甚至看到一些更复杂的操作产生(非常轻微)不同的结果只运行两次(在相同的硬件上),可能是由于聚合中的未指定顺序和平均操作导致舍入错误(我通常使用float32,所以这是一个因素我猜也是如此。
答案 1 :(得分:3)
当然有一个真正的区别。 Numpy适用于可以使用高度优化的矢量化计算的数组,并且它在CPU上运行良好,而tensorflow的数学函数针对GPU进行了优化,其中许多矩阵乘法更为重要。所以问题是你想用什么。对于CPU,我会选择numpy,而对于GPU,使用TF操作是有意义的。