tensorflow reduce_mean vs numpy mean

时间:2017-10-07 22:15:37

标签: numpy tensorflow mean

据我所知,tensorflow reduce_mean和numpy mean应返回相同的值,但下面的示例返回不同的值:

import numpy as np
import tensorflow as tf

t_1 = tf.constant([1,3,4,5])
t_2 = tf.constant([7,8,9,0])
list_t = [t_1, t_2]
reduced_t_list = tf.reduce_mean(list_t)
sess= tf.Session()
print(sess.run(reduced_t_list))
print(np.mean([1,3,4,5,7,8,9,0]))

output:
4
4.625

任何猜测为什么?

1 个答案:

答案 0 :(得分:1)

来自tf.constant docs

If the argument dtype is not specified, then the type is inferred from the type of value.

dtype的{​​{1}}为[1, 2, 3, 4],而int默认会将其投放到np.mean([1, 2, 3])的数组中。

尝试float