圆/矩形碰撞响应

时间:2017-07-28 10:09:58

标签: javascript math game-physics

所以我前段时间建了一个突破克隆,我想稍微升级一下,主要是为了碰撞。当我第一次做到这一点时,我的球和我的砖之间有一个基本的“碰撞”检测,实际上将球视为另一个矩形。但是这会产生边缘碰撞的问题,所以我想我会改变它。问题是,我找到了一些问题的答案:

例如此图片

enter image description here

以及该主题的最后评论:circle/rect collision reaction但我找不到如何计算最终速度向量。

到目前为止,我有:

- 找到矩形上的最近点
  - 创建了法线和切线矢量

现在我需要的是以某种方式“将速度矢量划分为法线分量和切线分量;否定法线分量并添加法线和切线分量以获得新的速度矢量”如果这看起来我很抱歉非常容易,但我无法理解...... 代码:

function collision(rect, circle){
  var NearestX = Max(rect.x, Min(circle.pos.x, rect.x + rect.w));
  var NearestY = Max(rect.y, Min(circle.pos.y, rect.y + rect.w));

  var dist = createVector(circle.pos.x - NearestX, circle.pos.y - NearestY);
  var dnormal = createVector(- dist.y, dist.x);
//change current circle vel according to the collision response
}

谢谢!

编辑:还找到了this,但我不知道它是否适用于矩形的所有点或仅适用于角落。

2 个答案:

答案 0 :(得分:5)

最好用几张图解释:

angles

有入射角=反射角。将此值称为θ。

angles2

θ=法线角度 - 入射角度。

atan2是用于计算正x轴矢量角度的函数。

然后紧接着下面的代码:

function collision(rect, circle){
  var NearestX = Max(rect.x, Min(circle.pos.x, rect.x + rect.w));
  var NearestY = Max(rect.y, Min(circle.pos.y, rect.y + rect.h));

  var dist = createVector(circle.pos.x - NearestX, circle.pos.y - NearestY);
  var dnormal = createVector(- dist.y, dist.x);

  var normal_angle = atan2(dnormal.y, dnormal.x);
  var incoming_angle = atan2(circle.vel.y, circle.vel.x);
  var theta = normal_angle - incoming_angle;
  circle.vel = circle.vel.rotate(2*theta);
}

另一种方法是沿着切线获得速度,然后从圆周速度中减去这个值的两倍。

angles3

然后代码变为

function collision(rect, circle){
  var NearestX = Max(rect.x, Min(circle.pos.x, rect.x + rect.w));
  var NearestY = Max(rect.y, Min(circle.pos.y, rect.y + rect.h));

  var dist = createVector(circle.pos.x - NearestX, circle.pos.y - NearestY);
  var tangent_vel = dist.normalize().dot(circle.vel);
  circle.vel = circle.vel.sub(tangent_vel.mult(2));
}

上面的两个代码片段几乎在同一时间(可能)完全相同。只需挑选一个你最了解的人。

另外,正如@arbuthnott所指出的那样,NearestY应该使用rect.h而不是rect.w存在复制粘贴错误。

编辑:我忘记了位置分辨率。这是将两个物理对象分开移动以使它们不再相交的过程。在这种情况下,由于块是静态的,我们只需要移动球。

penetration diagram

function collision(rect, circle){
  var NearestX = Max(rect.x, Min(circle.pos.x, rect.x + rect.w));
  var NearestY = Max(rect.y, Min(circle.pos.y, rect.y + rect.h));    
  var dist = createVector(circle.pos.x - NearestX, circle.pos.y - NearestY);

  if (circle.vel.dot(dist) < 0) { //if circle is moving toward the rect
    //update circle.vel using one of the above methods
  }

  var penetrationDepth = circle.r - dist.mag();
  var penetrationVector = dist.normalise().mult(penetrationDepth);
  circle.pos = circle.pos.sub(penetrationVector);
}

答案 1 :(得分:3)

蝙蝠和球碰撞

处理球和矩形碰撞的最佳方法是利用系统的对称性。

球为点。

首先是球,它有一个半径r,它定义了距离中心的所有点r。但我们可以将球转变为一个点并将半径添加到矩形中。现在球只是一个随时间移动的点,这是一条线。

矩形的四周都是半径。该图显示了这是如何工作的。

enter image description here

绿色矩形是原始矩形。球A,B不接触矩形,而球C,D接触。球A,D代表一种特殊情况,但很容易解决,你会看到。

所有动作都作为一条线。

所以现在我们有一个更大的矩形和一个球作为随时间移动的点(一条线),但矩形也在移动,这意味着随着时间的推移,边缘会扫出对我的大脑来说过于复杂的区域,所以再一次,我们可以使用对称性,这次是相对运动。

从蝙蝠的角度来看,当球在移动时它是静止的,并且从球中,它仍在蝙蝠移动时。他们都看到对方朝着相反的方向前进。

由于球现在是一个点,改变它的运动只会改变它行进的线。所以我们现在可以将球棒固定在太空中并从球中减去它的移动。当蝙蝠现在固定时,我们可以将其中心点移动到原点(0,0)并将球向相反方向移动。

此时我们做了一个重要的假设。球和球棒总是处于不接触的状态,当我们移动球和/或球棒时它们可能会接触。如果他们确实进行了接触,我们会计算出一条新的轨迹,以便它们不会接触。

两次可能的碰撞

现在有两种可能的碰撞情况,一种是球撞击球棒侧面,另一种是球撞击球棒角落。

接下来的图像显示了原点上的球棒和球棒相对于球棒的运动和位置。它沿着从A到B的红线行进然后反弹到C

球击中边缘

enter image description here

球击中角落

enter image description here

因为这里存在对称性,所以哪个侧面或角落被击中没有任何区别。事实上,我们可以根据球从球棒中心的大小来反映整个问题。因此,如果球离开球棒,则镜像其在x方向上的位置和运动,并且在y方向上相同(您必须通过信号量跟踪此镜像,以便在找到解决方案后可以将其反转)。

代码

该示例执行上述函数doBatBall(bat, ball)中所描述的内容。球具有一定的重力并将从画布的两侧反弹。蝙蝠通过鼠标移动。蝙蝠的运动将转移到球上,但蝙蝠不会感受到来自球的任何力量。

const ctx = canvas.getContext("2d");
const mouse  = {x : 0, y : 0, button : false}
function mouseEvents(e){
	mouse.x = e.pageX;
	mouse.y = e.pageY;
	mouse.button = e.type === "mousedown" ? true : e.type === "mouseup" ? false : mouse.button;
}
["down","up","move"].forEach(name => document.addEventListener("mouse" + name, mouseEvents));
								
// short cut vars 
var w = canvas.width;
var h = canvas.height;
var cw = w / 2;  // center 
var ch = h / 2;
const gravity = 1;


// constants and helpers
const PI2 = Math.PI * 2;
const setStyle = (ctx,style) => { Object.keys(style).forEach(key=> ctx[key] = style[key] ) };

// the ball
const ball = {
    r : 50,
    x : 50,
    y : 50,
    dx : 0.2,
    dy : 0.2,
    maxSpeed : 8,
    style : {
        lineWidth : 12,
        strokeStyle : "green",
    },
    draw(ctx){
        setStyle(ctx,this.style);
        ctx.beginPath();
        ctx.arc(this.x,this.y,this.r-this.style.lineWidth * 0.45,0,PI2);
        ctx.stroke();
    },
    update(){
        this.dy += gravity;
        var speed = Math.sqrt(this.dx * this.dx + this.dy * this.dy);
        var x = this.x + this.dx;
        var y = this.y + this.dy;
        
        if(y > canvas.height - this.r){
             y = (canvas.height - this.r) - (y - (canvas.height - this.r));
             this.dy = -this.dy;
        }
        if(y < this.r){
             y = this.r - (y - this.r);
             this.dy = -this.dy;
        }
        if(x > canvas.width - this.r){
             x = (canvas.width - this.r) - (x - (canvas.width - this.r));
             this.dx = -this.dx;
        }
        if(x < this.r){
             x = this.r - (x - this.r);
             this.dx = -this.dx;
        }
        
        this.x = x;
        this.y = y;
        if(speed > this.maxSpeed){  // if over speed then slow the ball down gradualy
            var reduceSpeed = this.maxSpeed + (speed-this.maxSpeed) * 0.9; // reduce speed if over max speed
            this.dx = (this.dx / speed) * reduceSpeed;
            this.dy = (this.dy / speed) * reduceSpeed;
        }
        
        
    }
}
const ballShadow = { // this is used to do calcs that may be dumped
    r : 50,
    x : 50,
    y : 50,
    dx : 0.2,
    dy : 0.2,
}
// Creates the bat
const bat = {
    x : 100,
    y : 250,
    dx : 0,
    dy : 0,
    width : 140,
    height : 10,
    style : {
        lineWidth : 2,
        strokeStyle : "black",
    },
    draw(ctx){
        setStyle(ctx,this.style);
        ctx.strokeRect(this.x - this.width / 2,this.y - this.height / 2, this.width, this.height);
    },
    update(){
        this.dx = mouse.x - this.x;
        this.dy = mouse.y - this.y;        
        var x = this.x + this.dx;
        var y = this.y + this.dy;
        x < this.width / 2  && (x = this.width / 2);
        y < this.height / 2  && (y = this.height / 2);
        x > canvas.width - this.width / 2  && (x = canvas.width  - this.width / 2);
        y > canvas.height - this.height / 2  && (y = canvas.height - this.height / 2);        
        this.dx = x - this.x;
        this.dy = y - this.y;
        this.x = x;
        this.y = y;
        
    }
}

//=============================================================================
// THE FUNCTION THAT DOES THE BALL BAT sim.
// the ball and bat are at new position
function doBatBall(bat,ball){
    var mirrorX = 1;
    var mirrorY = 1;

    const s = ballShadow; // alias
    s.x = ball.x;
    s.y = ball.y;
    s.dx = ball.dx;
    s.dy = ball.dy;
    s.x -= s.dx;
    s.y -= s.dy;

    // get the bat half width height
    const batW2 = bat.width / 2;
    const batH2 = bat.height / 2;  

    // and bat size plus radius of ball
    var batH = batH2 + ball.r;
    var batW = batW2 + ball.r;

    // set ball position relative to bats last pos
    s.x -= bat.x;
    s.y -= bat.y;
    
    // set ball delta relative to bat
    s.dx -= bat.dx;
    s.dy -= bat.dy;
    
    // mirror x and or y if needed
    if(s.x < 0){
        mirrorX = -1;
        s.x = -s.x;
        s.dx = -s.dx;
    }
    if(s.y < 0){
        mirrorY = -1;
        s.y = -s.y;
        s.dy = -s.dy;
    }
    
    
    // bat now only has a bottom, right sides and bottom right corner
    var distY = (batH - s.y); // distance from bottom 
    var distX = (batW - s.x); // distance from right

    if(s.dx > 0 && s.dy > 0){ return }// ball moving away so no hit

    var ballSpeed = Math.sqrt(s.dx * s.dx + s.dy * s.dy); // get ball speed relative to bat

    // get x location of intercept for bottom of bat
    var bottomX = s.x +(s.dx / s.dy) * distY;

    // get y location of intercept for right of bat
    var rightY = s.y +(s.dy / s.dx) * distX;

    // get distance to bottom and right intercepts
    var distB = Math.hypot(bottomX - s.x, batH - s.y);
    var distR = Math.hypot(batW - s.x, rightY - s.y);
    var hit = false;

    if(s.dy < 0 && bottomX <= batW2 && distB <= ballSpeed && distB < distR){  // if hit is on bottom and bottom hit is closest
        hit = true;     
        s.y = batH - s.dy * ((ballSpeed - distB) / ballSpeed);
        s.dy = -s.dy;
    }
    if(! hit && s.dx < 0 && rightY <= batH2 && distR <= ballSpeed && distR <= distB){ // if hit is on right and right hit is closest
        hit = true;     
        s.x =  batW  - s.dx * ((ballSpeed - distR) / ballSpeed);;
        s.dx = -s.dx;
    }
    if(!hit){  // if no hit may have intercepted the corner. 
        // find the distance that the corner is from the line segment from the balls pos to the next pos
        const u = ((batW2 - s.x) * s.dx + (batH2 - s.y) * s.dy)/(ballSpeed * ballSpeed);
        
        // get the closest point on the line to the corner
        var cpx = s.x + s.dx * u;
        var cpy = s.y + s.dy * u;
        
        // get ball radius squared
        const radSqr = ball.r * ball.r;
        
        // get the distance of that point from the corner squared
        const dist  = (cpx - batW2) * (cpx - batW2) + (cpy - batH2) * (cpy - batH2);
        
        // is that distance greater than ball radius
        if(dist > radSqr){ return }  // no hit

        // solves the triangle from center to closest point on balls trajectory
        var d = Math.sqrt(radSqr - dist) / ballSpeed;

        // intercept point is closest to line start
        cpx -= s.dx * d;
        cpy -= s.dy * d;
        
        // get the distance from the ball current pos to the intercept point
        d = Math.hypot(cpx - s.x,cpy - s.y);
        
        // is the distance greater than the ball speed then its a miss
        if(d > ballSpeed){  return  } // no hit return
        
        s.x = cpx;  // position of contact
        s.y = cpy;        
        
        // find the normalised tangent at intercept point 
        const ty = (cpx - batW2) / ball.r;
        const tx = -(cpy - batH2) / ball.r;
        
        // calculate the reflection vector
        const bsx = s.dx / ballSpeed;   // normalise ball speed
        const bsy = s.dy / ballSpeed;
        const dot = (bsx * tx + bsy * ty) * 2;
        
        // get the distance the ball travels past the intercept
        d = ballSpeed - d;
        
        // the reflected vector is the balls new delta (this delta is normalised)
        s.dx = (tx * dot - bsx); 
        s.dy = (ty * dot - bsy);
        
        // move the ball the remaining distance away from corner
        s.x += s.dx * d;
        s.y += s.dy * d;        
        
        // set the ball delta to the balls speed
        s.dx *= ballSpeed;
        s.dy *= ballSpeed;
        hit = true;
    }
    
    // if the ball hit the bat restore absolute position
    if(hit){
        // reverse mirror
        s.x *= mirrorX;
        s.dx *= mirrorX;
        s.y *= mirrorY;
        s.dy *= mirrorY;

        // remove bat relative position
        s.x += bat.x;
        s.y += bat.y;
        
        // remove bat relative delta
        s.dx += bat.dx;
        s.dy += bat.dy;
        
        // set the balls new position and delta
        ball.x = s.x;
        ball.y = s.y;
        ball.dx = s.dx;
        ball.dy = s.dy;
    }
    
}





// main update function
function update(timer){

    if(w !== innerWidth || h !== innerHeight){
      cw = (w = canvas.width = innerWidth) / 2;
      ch = (h = canvas.height = innerHeight) / 2;
    }
      
  
    
    ctx.setTransform(1,0,0,1,0,0); // reset transform
    ctx.globalAlpha = 1;           // reset alpha
    ctx.clearRect(0,0,w,h);
    
    // move bat and ball
    bat.update();
    ball.update();
    
    // check for bal bat contact and change ball position and trajectory if needed
    doBatBall(bat,ball);        

    // draw ball and bat
    bat.draw(ctx);
    ball.draw(ctx);
   
    requestAnimationFrame(update);

}
requestAnimationFrame(update);
canvas { position : absolute; top : 0px; left : 0px; }
body {font-family : arial; }
Use the mouse to move the bat and hit the ball.
<canvas id="canvas"></canvas>

使用此方法存在缺陷。

可以用球棒捕捉球,使得没有有效的解决方案,例如将球向下压到屏幕的底部。在某些时候,球的直径大于壁和球棒之间的空间。当发生这种情况时,解决方案将失败并且球将通过球棒。

在演示中,我们尽一切努力不失去能量,但随着时间的推移,浮点误差会累积,如果没有输入运行,这会导致能量损失。

由于蝙蝠具有无限的动量,很容易将大量能量传递到球上,以防止球积聚到很大的动量我已经为球增加了最大速度。如果球的移动速度比最大速度快,则逐渐减速直到最大速度或低于最大速度。

有时如果你以相同的速度将球棒从球上移开,由于重力引起的额外加速可能导致球没有被正确地推离球棒。