我正在阅读不断更新的data.txt
文件,并计算输入数据流的滚动标准偏差。我将其存储在std
中。滚动标准偏差的窗口大小为100。
我收到错误:
ValueError: cannot copy sequence with size 78 to array axis with dimension 1
其中大小对应于std
数组中的项目数。 (所以这当然,每次我点击Run都会增加。)
我想知道为什么我收到这个ValueError,并且正在寻找任何修复它的建议!当我评分ax1.plot(xar, yar)
时,动画效果很好。但是一旦我尝试绘制ax1.plot(xar, std)
图表,就会出现问题。
data.txt
中的数据如下所示:
[0.0, 0.0078125, 0.015625][0.0, 0.0078125, 0.015625][0.0, 0.0078125, 0.015625][0.0, 0.0078125, 0.015625][0.0, 0.0078125, 0.015625][0.0, 0.0078125, 0.015625][0.0244140625, 0.0322265625, 0.9609375][0.0244140625, 0.0322265625, 0.9609375][0.0244140625, 0.0322265625, 0.9609375][0.0244140625, 0.0322265625, 0.9609375][0.0244140625, 0.0322265625, 0.9609375][0.0244140625, 0.0322265625, 0.9609375][0.0244140625, 0.0322265625, 0.9609375][0.0244140625, 0.0322265625, 0.9609375][0.0244140625, 0.0322265625, 0.9609375][0.0263671875, 0.0341796875, 1.0341796875][0.0263671875, 0.0341796875, 1.0341796875][0.0263671875, 0.0341796875, 1.0341796875][0.0263671875, 0.0341796875, 1.0341796875][0.0263671875, 0.0341796875, 1.0341796875][0.0263671875, 0.0341796875, 1.0341796875][0.0263671875, 0.0341796875, 1.0341796875][0.0263671875, 0.0341796875, 1.0341796875][0.0244140625, 0.0341796875, 1.0048828125][0.0244140625, 0.0341796875, 1.0048828125][0.0244140625, 0.0341796875, 1.0048828125][0.0244140625, 0.0341796875, 1.0048828125][0.0244140625, 0.0341796875, 1.0048828125][0.0244140625, 0.0341796875, 1.0048828125][0.0244140625, 0.0341796875, 1.0048828125][0.0244140625, 0.0341796875, 1.0048828125][0.0244140625, 0.0341796875, 1.0048828125][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.033203125, 1.009765625][0.025390625, 0.033203125, 1.009765625][0.025390625, 0.033203125, 1.009765625][0.025390625, 0.033203125, 1.009765625][0.025390625, 0.033203125, 1.009765625][0.025390625, 0.033203125, 1.009765625][0.025390625, 0.033203125, 1.009765625][0.025390625, 0.033203125, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.0263671875, 0.0341796875, 1.009765625][0.0263671875, 0.0341796875, 1.009765625][0.0263671875, 0.0341796875, 1.009765625][0.0263671875, 0.0341796875, 1.009765625][0.0263671875, 0.0341796875, 1.009765625][0.0263671875, 0.0341796875, 1.009765625][0.0263671875, 0.0341796875, 1.009765625][0.0263671875, 0.0341796875, 1.009765625][0.0263671875, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625]
我目前的代码如下:
fig = plt.figure()
ax1 = fig.add_subplot(1,1,1)
def animate(i):
data = pd.read_csv("C:\\Users\\Desktop\\data.txt", sep="\[|\]\[|\]",engine = 'python', header = None)
data = data.iloc[0]
data = data.astype(str).apply(lambda x: x.split(',')[-1]).astype(float)
data.pop(0)
xar = []
yar = []
std = []
for j in range(len(data)):
xar.append(j)
for k in range(len(data)):
yar.append(data.iloc[k])
yar = pd.DataFrame(yar)
std.append(pd.rolling_std(yar, 100))
ax1.clear()
ax1.plot(xar,std)
ani = animation.FuncAnimation(fig, animate, interval=.01)
plt.show()
答案 0 :(得分:1)
您的错误原因是您std
成为数据框的列表(一个元素)。 pd.rolling_std()
已经为您提供了数据框,然后将其附加到您的列表中。如果你只是直接分配它,它会更好地工作:
std = pd.rolling_std(yar, 100)
但是,在运行pd.rolling_std()
时会出现弃用警告。所以,该行应该是:
std = yar.rolling(window=100,center=False).std()
此外,关于如何生成xar
和yar
,还可以进行一些简化。 xar
只是一个范围,yar
包含data
允许您编写的所有元素:
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.animation as animation
def animate(i):
data = pd.read_csv("C:\\Users\\Desktop\\data.txt", sep="\[|\]\[|\]",engine = 'python', header = None)
data = data.iloc[0]
data = data.astype(str).apply(lambda x: x.split(',')[-1]).astype(float)
data.pop(0)
xar = range(len(data))
yar = pd.DataFrame(data)
std = yar.rolling(window=100,center=False).std()
ax1.clear()
ax1.plot(xar,std)
fig = plt.figure()
ax1 = fig.add_subplot(1,1,1)
ani = animation.FuncAnimation(fig, animate, interval=.01)
plt.show()
其中animate()
已经有所简化。