熊猫 - 下降列

时间:2017-07-26 17:16:49

标签: python pandas dataframe

我知道删除数据框的列应该像以下一样简单:

df.drop(df.columns[1], axis=1)按索引删除

dr.dropna(axis=1, how='any')根据其是否包含NaN来删除。

但这些都不适用于我的数据框架,我不确定这是因为格式问题或数据类型问题,还是对这些命令的误用或误解。

这是我的数据框:

fish_frame after append new_column:                         0       1       2      3                          4  \
2                 GBE COD     NaN     NaN    600                        NaN   
3                 GBW COD     NaN  11,189    NaN                        NaN   
4                 GOM COD     NaN       0    NaN  Package Deal - $40,753.69   
5                 POLLOCK     NaN     NaN  1,103                        NaN   
6                   WHAKE     NaN     NaN     12                        NaN   
7             GBE HADDOCK     NaN  10,730    NaN                        NaN   
8             GBW HADDOCK     NaN  64,147    NaN                        NaN   
9             GOM HADDOCK     NaN       0    NaN                        NaN   
10                REDFISH     NaN     NaN      0                        NaN   
11         WITCH FLOUNDER     NaN     370    NaN                        NaN   
12                 PLAICE     NaN     NaN    622                        NaN   
13     GB WINTER FLOUNDER  54,315     NaN    NaN                        NaN   
14    GOM WINTER FLOUNDER     653     NaN    NaN                        NaN   
15  SNEMA WINTER FLOUNDER  14,601     NaN    NaN                        NaN   
16          GB YELLOWTAIL     NaN   1,663    NaN                        NaN   
17       SNEMA YELLOWTAIL     NaN   1,370    NaN                        NaN   
18       CCGOM YELLOWTAIL   1,812     NaN    NaN                        NaN   

       6        package_deal_column Package_Price new_column  
2    NaN  Package Deal - $40,753.69          None        600  
3    NaN  Package Deal - $40,753.69          None    11,1890  
4   None  Package Deal - $40,753.69          None          0  
5    NaN  Package Deal - $40,753.69          None      1,103  
6    NaN  Package Deal - $40,753.69          None         12  
7    NaN  Package Deal - $40,753.69          None    10,7300  
8    NaN  Package Deal - $40,753.69          None    64,1470  
9    NaN  Package Deal - $40,753.69          None          0  
10   NaN  Package Deal - $40,753.69          None          0  
11   NaN  Package Deal - $40,753.69          None       3700  
12   NaN  Package Deal - $40,753.69          None        622  
13  None  Package Deal - $40,753.69          None   54,31500  
14  None  Package Deal - $40,753.69          None      65300  
15  None  Package Deal - $40,753.69          None   14,60100  
16   NaN  Package Deal - $40,753.69          None     1,6630  
17   NaN  Package Deal - $40,753.69          None     1,3700  
18  None  Package Deal - $40,753.69          None    1,81200 

然后我有以下几行代码:

fish_frame.drop(fish_frame.columns[1], axis=1)
fish_frame.drop(fish_frame.columns[2], axis=1)
fish_frame.drop(fish_frame.columns[3], axis=1)
fish_frame.drop(fish_frame.columns[4:5], axis=1)
#del fish_frame[4:5]    #doesn't work, "TypeError: slice(4, 5, None) is an invalid key"
del fish_frame['Package_Price']
fish_frame.dropna(axis=1, how='any')

然后我再次打印出数据框,结果如下:

NEW fish_frame:                         0       1       2      3                          4  \
2                 GBE COD     NaN     NaN    600                        NaN   
3                 GBW COD     NaN  11,189    NaN                        NaN   
4                 GOM COD     NaN       0    NaN  Package Deal - $40,753.69   
5                 POLLOCK     NaN     NaN  1,103                        NaN   
6                   WHAKE     NaN     NaN     12                        NaN   
7             GBE HADDOCK     NaN  10,730    NaN                        NaN   
8             GBW HADDOCK     NaN  64,147    NaN                        NaN   
9             GOM HADDOCK     NaN       0    NaN                        NaN   
10                REDFISH     NaN     NaN      0                        NaN   
11         WITCH FLOUNDER     NaN     370    NaN                        NaN   
12                 PLAICE     NaN     NaN    622                        NaN   
13     GB WINTER FLOUNDER  54,315     NaN    NaN                        NaN   
14    GOM WINTER FLOUNDER     653     NaN    NaN                        NaN   
15  SNEMA WINTER FLOUNDER  14,601     NaN    NaN                        NaN   
16          GB YELLOWTAIL     NaN   1,663    NaN                        NaN   
17       SNEMA YELLOWTAIL     NaN   1,370    NaN                        NaN   
18       CCGOM YELLOWTAIL   1,812     NaN    NaN                        NaN   

       6        package_deal_column new_column  
2    NaN  Package Deal - $40,753.69        600  
3    NaN  Package Deal - $40,753.69    11,1890  
4   None  Package Deal - $40,753.69          0  
5    NaN  Package Deal - $40,753.69      1,103  
6    NaN  Package Deal - $40,753.69         12  
7    NaN  Package Deal - $40,753.69    10,7300  
8    NaN  Package Deal - $40,753.69    64,1470  
9    NaN  Package Deal - $40,753.69          0  
10   NaN  Package Deal - $40,753.69          0  
11   NaN  Package Deal - $40,753.69       3700  
12   NaN  Package Deal - $40,753.69        622  
13  None  Package Deal - $40,753.69   54,31500  
14  None  Package Deal - $40,753.69      65300  
15  None  Package Deal - $40,753.69   14,60100  
16   NaN  Package Deal - $40,753.69     1,6630  
17   NaN  Package Deal - $40,753.69     1,3700  
18  None  Package Deal - $40,753.69    1,81200  

NaN丢弃工作和索引丢弃都不起作用。只有特定的drop[column name]命令有效,但我不能对此脚本的每次迭代都这样做。

我很困惑,我希望这不是一个非常愚蠢的错误。

此外,我自己并不完全理解这些信息,但打印fish_frame.info()会产生:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 17 entries, 2 to 18
Data columns (total 8 columns):
0                      17 non-null object
1                      4 non-null object
2                      8 non-null object
3                      5 non-null object
4                      1 non-null object
6                      0 non-null object
package_deal_column    17 non-null object
new_column             17 non-null object
dtypes: object(8)
memory usage: 586.0+ bytes

任何有助于解决此问题的人都将不胜感激。

3 个答案:

答案 0 :(得分:5)

如果没有错误我从输出中看不到,您只是忘记使用inplace参数:

df.drop(df.columns[1], axis=1, inplace=True)

答案 1 :(得分:2)

以下是一些替代方案:

<强>设定:

df = pd.DataFrame(np.random.rand(3,5), columns=list('abcde'))

In [57]: cols_to_drop = ['b', 'd']

In [63]: df
Out[63]:
          a         b         c         d         e
0  0.758670  0.734007  0.027711  0.614674  0.955711
1  0.833110  0.242010  0.922831  0.165401  0.546079
2  0.414916  0.949050  0.608527  0.018036  0.230343

选项1:

df = df[df.columns.drop(col_to_drop)]

选项2:

df = df[df.columns.difference(cols_to_drop)]

选项3:

df = df.loc[:, ~df.columns.isin(cols_to_drop)]

所有回报:

          a         c         e
0  0.758670  0.027711  0.955711
1  0.833110  0.922831  0.546079
2  0.414916  0.608527  0.230343

答案 2 :(得分:0)

如果您尝试使用NaN删除列,则下面的代码就足够了。好吧,我自己尝试了一下,而且效果很好。

df = df.dropna(axis = 1)