我有以下格式的输入记录: Input data format
我希望以下列格式转换数据: Output data format
我想根据条件类型合并我的2行。
据我所知,我需要获取3个数据字段的复合键,并在它们相等时比较类型字段。
有人可以帮我解决使用Python的Spark实现吗?
编辑: 以下是我在pyspark中使用RDD的尝试
record = spark.read.csv("wasb:///records.csv",header=True).rdd
print("Total records: %d")%record.count()
private_ip = record.map(lambda fields: fields[2]).distinct().count()
private_port = record.map(lambda fields: fields[3]).distinct().count()
destination_ip = record.map(lambda fields: fields[6]).distinct().count()
destination_port = record.map(lambda fields: fields[7]).distinct().count()
print("private_ip:%d, private_port:%d, destination ip:%d, destination_port:%d")%(private_ip,private_port,destination_ip,destination_port)
types = record.map(lambda fields: ((fields[2],fields[3],fields[6],fields[7]),fields[0])).reduceByKey(lambda a,b:a+','+b)
print types.first()
以下是我的输出到现在为止。
((u'100.79.195.101', u'54835', u'58.96.162.33', u'80'), u'22-02-2016 13:11:03,22-02-2016 13:13:53')
答案 0 :(得分:2)
希望这有帮助!
(编辑注释:在获得更新的要求后调整代码)
import pyspark.sql.functions as func
#create RDD
rdd = sc.parallelize([(22,'C','xxx','yyy','zzz'),(23,'D','xxx','yyy','zzz'),(24,'C','xxx1','yyy1','zzz1'),(25,'D','xxx1','yyy1','zzz1')])
#convert RDD to dataframe
df = rdd.toDF(['Date','Type','Data1','Data2','Data3'])
df.show()
#group by 3 data columns to create list of date & type
df1 = df.sort("Data1","Data2","Data3","Type").groupBy("Data1","Data2","Data3").agg(func.collect_list("Type"),func.collect_list("Date")).withColumnRenamed("collect_list(Type)", "Type_list").withColumnRenamed("collect_list(Date)", "Date_list")
#add 2 new columns by splitting above date list based on type list's value
df2 = df1.where((func.col("Type_list")[0]=='C') & (func.col("Type_list")[1]=='D')).withColumn("Start Date",df1.Date_list[0]).withColumn("End Date",df1.Date_list[1])
#select only relevant columns as an output
df2.select("Data1","Data2","Data3","Start Date","End Date").show()
使用RDD的替代解决方案: -
(编辑注释:添加到以下代码段,因为@AnmolDave也对RDD解决方案感兴趣)
import pyspark.sql.types as typ
rdd = sc.parallelize([('xxx','yyy','zzz','C',22),('xxx','yyy','zzz','D',23),('xxx1','yyy1','zzz1','C', 24),('xxx1','yyy1','zzz1','D', 25)])
reduced = rdd.map(lambda row: ((row[0], row[1], row[2]), [(row[3], row[4])]))\
.reduceByKey(lambda x,y: x+y)\
.map(lambda row: (row[0], sorted(row[1], key=lambda text: text[0])))\
.map(lambda row: (
row[0][0],
row[0][1],
row[0][2],
','.join([str(e[0]) for e in row[1]]),
row[1][0][1],
row[1][1][1]
)
)\
.filter(lambda row: row[3]=="C,D")
schema_red = typ.StructType([
typ.StructField('Data1', typ.StringType(), False),
typ.StructField('Data2', typ.StringType(), False),
typ.StructField('Data3', typ.StringType(), False),
typ.StructField('Type', typ.StringType(), False),
typ.StructField('Start Date', typ.StringType(), False),
typ.StructField('End Date', typ.StringType(), False)
])
df_red = sqlContext.createDataFrame(reduced, schema_red)
df_red.show()
答案 1 :(得分:1)
这是一个简单的例子,代码在scala上希望你可以改成python。
//create a dummy data
val df = Seq((22, "C", "xxx","yyy","zzz"), (23, "C", "xxx","yyy","zzz")).toDF("Date", "Type", "Data1", "Data2", "Data3")
+----+----+-----+-----+-----+
|Date|Type|Data1|Data2|Data3|
+----+----+-----+-----+-----+
| 22| C| xxx| yyy| zzz|
| 23| C| xxx| yyy| zzz|
+----+----+-----+-----+-----+
//group by three fields and collect as list for column Date
val df1 = df.groupBy("Data1", "Data2", "Data3").agg(collect_list($"Date"))
+-----+-----+-----+--------+
|Data1|Data2|Data3| Date|
+-----+-----+-----+--------+
| xxx| yyy| zzz|[22, 23]|
+-----+-----+-----+--------+
//create new column with the given array of date
df1.withColumn("Start Date", $"Date"(0)).withColumn("End Date", $"Date"(1)).show
+-----+-----+-----+--------+----------+--------+
|Data1|Data2|Data3| Date|Start Date|End Date|
+-----+-----+-----+--------+----------+--------+
| xxx| yyy| zzz|[22, 23]| 22| 23|
+-----+-----+-----+--------+----------+--------+
希望这有帮助!