我在pyspark
中有一个数据框,如下所示。
df.show()
+---+-------+----+
| id| type|s_id|
+---+-------+----+
| 1| ios| 11|
| 1| ios| 12|
| 1| ios| 13|
| 1| ios| 14|
| 1|android| 15|
| 1|android| 16|
| 1|android| 17|
| 2| ios| 21|
| 2|android| 18|
+---+-------+----+
现在从这个数据框中我想通过旋转来创建另一个数据框。
df1.show()
+---+-----+-----+-----+---------+---------+---------+
| id| ios1| ios2| ios3| android1| android2| android3|
+---+-----+-----+-----+---------+---------+---------+
| 1| 11| 12| 13| 15| 16| 17|
| 2| 21| Null| Null| 18| Null| Null|
+---+-----+-----+-----+---------+---------+---------+
在这里,我需要考虑每个Id
的条件,即使3
types
超过3 or less than 3
new_df.show()
+---+-------+----+
| id| type|s_id|
+---+-------+----+
| 1| ios| 11|
| 1| ios| 12|
| 1| | 13|
| 1| | 14|
| 1|andriod| 15|
| 1| | 16|
| 1| | 17|
| 2|andriod| 18|
| 2| ios| 21|
+---+-------+----+
,我也只想考虑+---+----+----+----+--------+----+----+
| id| 1| 2| 3|andriod1|ios1|ios2|
+---+----+----+----+--------+----+----+
| 1| 13| 14| 16| 15| 11| 12|
| 2|null|null|null| 18| 21|null|
+---+----+----+----+--------+----+----+
。
我该怎么做?
修改
+---+--------+--------+--------+----+----+----+
|id |android1|android2|android3|ios1|ios2|ios3|
+---+--------+--------+--------+----+----+----+
|1 |15 | null| null| 11| 12|null|
|2 |18 | null| null| 21|null|null|
+---+--------+--------+--------+----+----+----+
我得到的结果是
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
pcl::io::loadPCDFile<pcl::PointXYZ>("points.pcd", *cloud );
我想要的是
boost::shared_ptr
答案 0 :(得分:1)
使用以下逻辑可以获得所需的结果。
Window
函数用于为id
订购的每个type
和s_id
组生成行号。生成的行号用于filter
和concat
type
。然后最后分组和旋转应该为您提供所需的输出
from pyspark.sql import Window
windowSpec = Window.partitionBy("id", "type").orderBy("s_id")
from pyspark.sql import functions as f
df.withColumn("ranks", f.row_number().over(windowSpec))\
.filter(f.col("ranks") < 4)\
.withColumn("type", f.concat(f.col("type"), f.col("ranks")))\
.drop("ranks")\
.groupBy("id")\
.pivot("type")\
.agg(f.first("s_id"))\
.show(truncate=False)
应该给你
+---+--------+--------+--------+----+----+----+
|id |android1|android2|android3|ios1|ios2|ios3|
+---+--------+--------+--------+----+----+----+
|1 |15 |16 |17 |11 |12 |13 |
|2 |18 |null |null |21 |null|null|
+---+--------+--------+--------+----+----+----+
您需要一个额外的过滤器作为
df.withColumn("ranks", f.row_number().over(windowSpec)) \
.filter(f.col("ranks") < 4) \
.filter(f.col("type") != "") \
.withColumn("type", f.concat(f.col("type"), f.col("ranks"))) \
.drop("ranks") \
.groupBy("id") \
.pivot("type") \
.agg(f.first("s_id")) \
.show(truncate=False)
会给你
+---+--------+----+----+
|id |andriod1|ios1|ios2|
+---+--------+----+----+
|1 |15 |11 |12 |
|2 |18 |21 |null|
+---+--------+----+----+
现在这个数据框缺少android2, android3 and ios3
列。因为它们不存在于更新的输入数据中。您可以使用withColumn api添加它们并填充空值