对Spark还是陌生的,我正在尝试尽可能整洁,高效地完成此最终转换。
说我有一个如下所示的数据框
+------+--------+
|ID | Hit |
+------+--------+
|123 | 0 |
|456 | 1 |
|789 | 0 |
|123 | 1 |
|123 | 0 |
|789 | 1 |
|1234 | 0 |
| 1234 | 0 |
+------+--------+
我试图以一个新的数据框(或两个,取决于哪个更有效)结尾,其中如果一行的“命中”值为1,则行不能命中为0,如果有是,根据ID列,0会达到不同的水平。
这是我尝试过的方法之一,但是我不确定这是否是 1.最有效的方法 2.可能最干净的方式
dfhits = df.filter(df.Hit == 1)
dfnonhits = df.filter(df.Hit == 0)
dfnonhitsdistinct = dfnonhits.filter(~dfnonhits['ID'].isin(dfhits))
Enddataset如下所示:
+------+--------+
|ID | Hit |
+------+--------+
|456 | 1 |
|123 | 1 |
|789 | 1 |
|1234 | 0 |
+------+--------+
答案 0 :(得分:1)
# Creating the Dataframe.
from pyspark.sql.functions import col
df = sqlContext.createDataFrame([(123,0),(456,1),(789,0),(123,1),(123,0),(789,1),(500,0),(500,0)],
['ID','Hit'])
df.show()
+---+---+
| ID|Hit|
+---+---+
|123| 0|
|456| 1|
|789| 0|
|123| 1|
|123| 0|
|789| 1|
|500| 0|
|500| 0|
+---+---+
这个想法是在每个total
中找到Hit
个ID
中的1
,如果它大于0,则意味着{中至少存在一个Hit
{1}}。因此,当此条件为true
时,我们将删除所有rows
值为0的Hit
。
# Registering the dataframe as a temporary view.
df.registerTempTable('table_view')
df=sqlContext.sql(
'select ID, Hit, sum(Hit) over (partition by ID) as sum_Hit from table_view'
)
df.show()
+---+---+-------+
| ID|Hit|sum_Hit|
+---+---+-------+
|789| 0| 1|
|789| 1| 1|
|500| 0| 0|
|500| 0| 0|
|123| 0| 1|
|123| 1| 1|
|123| 0| 1|
|456| 1| 1|
+---+---+-------+
df = df.filter(~((col('Hit')==0) & (col('sum_Hit')>0))).drop('sum_Hit').dropDuplicates()
df.show()
+---+---+
| ID|Hit|
+---+---+
|789| 1|
|500| 0|
|123| 1|
|456| 1|
+---+---+