我一直在使用NumPy来做一些线性代数,但是我遇到了eigh()似乎返回错误的特征向量的问题。 Here是我正在使用的对称矩阵(481乘481)。请查看以下代码:
import numpy as np
c = np.load('C.npy')
eigenvectors_h = np.linalg.eigh(c)[1]
c.dot(eigenvectors_h[:, 0]) / eigenvectors_h[:, 0]
c
是真实的,绝对是对称的,因为np.allclose(c, c.T)
会返回True
。
我没有得到一个由特征值组成的数组重复481次,而是看到了什么看起来像随机数:
-1.03913672e+04 1.70145524e-15 -6.30342977e-16 -5.80181781e-15
2.43586988e-15 1.02142854e-13 -1.59100453e-13 6.34768223e-14
1.47793139e-14 5.19832084e-15 1.23786159e-14 -6.89332604e-14
3.35120474e-14 -5.55497774e-14 3.35912194e-14 2.41599711e-14
-8.10853045e-15 3.39728566e-14 1.66605768e-14 -4.62536283e-14
4.78158644e-15 1.05840004e-14 2.49968277e-14 6.37161752e-14
-8.29049452e-15 7.69540224e-13 -1.41737099e-14 -2.04904903e-14
-2.02649833e-14 8.75614182e-15 -6.43718154e-14 -6.71884701e-15
2.89567850e-15 -1.93639427e-14 2.05961830e-15 -2.82825321e-14
-2.99156760e-14 -1.17149803e-14 -1.00413883e-13 2.81365540e-15
-1.47420105e-14 -1.54638301e-14 2.97770540e-14 9.42616109e-14
-2.18819275e-13 6.23156105e-13 -1.14148906e-14 1.97147438e-14
-5.04103330e-14 -1.39415849e-13 -6.78032159e-14 -2.18085326e-14
-1.36511305e-14 3.09529929e-14 -9.42922227e-15 -1.80013713e-14
-3.34989389e-14 -1.31399506e-15 3.86915434e-14 7.43430828e-15
3.00681063e-14 3.15599077e-15 1.77696288e-14 -5.33198194e-15
-3.03304561e-14 1.74254787e-13 -3.31735946e-14 3.02816694e-14
-1.79965325e-14 -6.03794643e-13 -2.70964350e-14 1.13476801e-14
-1.31756179e-14 1.23490868e-14 1.31665400e-14 -4.82723158e-15
-6.80123679e-14 1.01616264e-13 -3.26409876e-14 5.00897081e-15
8.01025834e-14 -5.50605097e-13 3.03059609e-15 5.55524078e-14
1.76830600e-14 5.82590991e-14 -4.07471685e-14 -1.74936332e-14
3.67006376e-14 1.23210295e-14 4.54025070e-14 -1.37452957e-13
5.68932273e-15 3.59057575e-14 7.52501521e-15 -8.21274824e-15
2.86056181e-13 2.12632482e-14 9.50056403e-14 2.80131245e-14
...
但是,它适用于eig()
:
eigenvectors = np.linalg.eig(c)[1]
c.dot(eigenvectors[:, 0]) / eigenvectors[:, 0] #[126.56622721] * 481
我想使用eigh()
因为它似乎更快并且返回实际值而不是复杂值,但它似乎不起作用。谁能解释为什么这是我做错了什么?
此示例演示了自包含代码中的相同行为(使用基本上为等级1的随机矩阵,除了数字工件)。
import numpy as np
u = np.random.uniform(size=(100,))
c = np.outer(u, u)
eigenvectors_h = np.linalg.eigh(c)[1]
print(c.dot(eigenvectors_h[:, 0]) / eigenvectors_h[:, 0])
eigenvectors = np.linalg.eig(c)[1]
print(c.dot(eigenvectors[:, 0]) / eigenvectors[:, 0])
答案 0 :(得分:5)
.wrapperHeader
没有任何问题,只有eigh
。你会得到类似的"随机"数字,如果您使用列表末尾的特征向量测试eig
:尝试
eig
以下是发生的事情:
print(c.dot(eigenvectors[:, -10]) / eigenvectors[:, -10])
首先返回最小特征值(及其特征向量)。eigh
首先返回最大特征值(及其特征向量)。因此,您发现eig
和eig
的行为存在差异。
实际上,您的矩阵似乎是低秩+数值噪声。所以小的特征值应该是0,在这种情况下,特征向量的计算基本上是一个乐透;这是一个巨大的线性子空间,几乎被矩阵杀死,来自该子空间的任何东西都可以作为特征向量传递。乘法eigh
的结果只是一堆数值噪声。
c*eigenvector