我正在尝试使用mnist数据集训练一个简单的神经网络。出于某种原因,当我得到历史记录(从model.fit返回的参数)时,验证准确性高于训练准确度,这真的很奇怪,但如果我在评估模型时检查分数,我会得到更高的训练精度高于测试精度。
无论模型的参数如何,每次都会发生这种情况。此外,如果我使用自定义回调并访问参数' acc'和' val_acc',我发现同样的问题(这些数字与历史记录中返回的数字相同)。
请帮帮我!我究竟做错了什么?为什么验证准确度高于训练准确度(你可以看到我在查看损失时遇到同样的问题)。
这是我的代码:
#!/usr/bin/env python3.5
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D
import numpy as np
from keras import backend
from keras.utils import np_utils
from keras import losses
from keras import optimizers
from keras.datasets import mnist
from keras.models import Sequential
from matplotlib import pyplot as plt
# get train and test data (minst) and reduce volume to speed up (for testing)
(x_train, y_train), (x_test, y_test) = mnist.load_data()
data_reduction = 20
x_train = x_train[:x_train.shape[0] // data_reduction]
y_train = y_train[:y_train.shape[0] // data_reduction]
x_test = x_test[:x_test.shape[0] // data_reduction]
y_test = y_test[:y_test.shape[0] // data_reduction]
try:
IMG_DEPTH = x_train.shape[3]
except IndexError:
IMG_DEPTH = 1 # B/W
labels = np.unique(y_train)
N_LABELS = len(labels)
# reshape input data
if backend.image_data_format() == 'channels_first':
X_train = x_train.reshape(x_train.shape[0], IMG_DEPTH, x_train.shape[1], x_train.shape[2])
X_test = x_test.reshape(x_test.shape[0], IMG_DEPTH, x_train.shape[1], x_train.shape[2])
input_shape = (IMG_DEPTH, x_train.shape[1], x_train.shape[2])
else:
X_train = x_train.reshape(x_train.shape[0], x_train.shape[1], x_train.shape[2], IMG_DEPTH)
X_test = x_test.reshape(x_test.shape[0], x_train.shape[1], x_train.shape[2], IMG_DEPTH)
input_shape = (x_train.shape[1], x_train.shape[2], IMG_DEPTH)
# convert data type to float32 and normalize data values to range [0, 1]
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
# reshape input labels
Y_train = np_utils.to_categorical(y_train, N_LABELS)
Y_test = np_utils.to_categorical(y_test, N_LABELS)
# create model
opt = optimizers.Adam()
loss = losses.categorical_crossentropy
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape))
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(32, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(len(labels), activation='softmax'))
model.compile(optimizer=optimizers.Adam(), loss=losses.categorical_crossentropy, metrics=['accuracy'])
# fit model
history = model.fit(X_train, Y_train, batch_size=64, epochs=50, verbose=True,
validation_data=(X_test, Y_test))
# evaluate model
train_score = model.evaluate(X_train, Y_train, verbose=True)
test_score = model.evaluate(X_test, Y_test, verbose=True)
print("Validation:", test_score[1])
print("Training: ", train_score[1])
print("--------------------")
print("First 5 samples validation:", history.history["val_acc"][0:5])
print("First 5 samples training:", history.history["acc"][0:5])
print("--------------------")
print("Last 5 samples validation:", history.history["val_acc"][-5:])
print("Last 5 samples training:", history.history["acc"][-5:])
# plot history
plt.ion()
fig = plt.figure()
subfig = fig.add_subplot(122)
subfig.plot(history.history['acc'], label="training")
if history.history['val_acc'] is not None:
subfig.plot(history.history['val_acc'], label="validation")
subfig.set_title('Model Accuracy')
subfig.set_xlabel('Epoch')
subfig.legend(loc='upper left')
subfig = fig.add_subplot(121)
subfig.plot(history.history['loss'], label="training")
if history.history['val_loss'] is not None:
subfig.plot(history.history['val_loss'], label="validation")
subfig.set_title('Model Loss')
subfig.set_xlabel('Epoch')
subfig.legend(loc='upper left')
plt.ioff()
input("Press ENTER to close the plots...")
我得到的输出如下:
Validation accuracy: 0.97599999999999998
Training accuracy: 1.0
--------------------
First 5 samples validation: [0.83400000286102294, 0.89200000095367427, 0.91599999904632567, 0.9279999976158142, 0.9399999990463257]
First 5 samples training: [0.47133333333333333, 0.70566666682561241, 0.76933333285649619, 0.81133333333333335, 0.82366666714350378]
--------------------
Last 5 samples validation: [0.9820000019073486, 0.9860000019073486, 0.97800000190734859, 0.98399999713897701, 0.975999997138977]
Last 5 samples training: [0.9540000001589457, 0.95766666698455816, 0.95600000031789145, 0.95100000031789145, 0.95033333381017049]
在这里你可以看到我得到的情节: Training and Validation accuracy and loss plots
我不确定这是否相关,但我使用的是python 3.5和keras 2.0.4。
答案 0 :(得分:8)
来自Keras FAQ:
为什么培训损失远高于测试损失?
Keras模型有两种模式:训练和测试。在测试时关闭正常化机制,例如Dropout和L1 / L2权重正则化。
此外,培训损失是每批培训数据的平均损失。因为您的模型随着时间的推移而变化,所以第一批时期的损失通常高于最后一批。另一方面,时间的测试损失是使用模型计算的,因为它在时期结束时,导致较低的损失。
所以你看到的行为并不像阅读ML理论后看起来那么不寻常。这也解释了当您在同一模型上评估训练和测试集时,您突然得到预期的行为(训练acc> val acc)。我猜想在你的情况下,辍学的存在尤其会妨碍准确性在训练期间达到1.0,同时它在评估(测试)期间实现了它。
您可以通过添加在每个纪元保存模型的回调来进一步调查。然后,您可以使用两个集合评估每个已保存的模型,以重新创建绘图。
答案 1 :(得分:0)
训练准确性>验证准确性通常是在训练数据拟合不足时。即使数据拟合不足,但在验证数据比训练数据更适合您的模型的情况下,验证数据仍可能表现良好。
增加更多的卷积层,并在“ Dropout”层上松散,“ Dropout”层更少,或者单位丢失率降低。