我在训练过程中观察到一种奇怪的行为,即从一开始我的验证准确性就超过100%。
Epoch 0/3
----------
100%|██████████| 194/194 [00:50<00:00, 3.82it/s]
train Loss: 1.8653 Acc: 0.4796
100%|██████████| 194/194 [00:32<00:00, 5.99it/s]
val Loss: 1.7611 Acc: 1.2939
Epoch 1/3
----------
100%|██████████| 194/194 [00:42<00:00, 4.61it/s]
train Loss: 0.8704 Acc: 0.7467
100%|██████████| 194/194 [00:31<00:00, 6.11it/s]
val Loss: 1.0801 Acc: 1.4694
输出表明一个时期重复了194个批次,这对于训练数据似乎是正确的(长度为6186,batch_size为32,因此32 * 194 = 6208,这是≈6186),但是与验证数据的大小不匹配(长度为3447,batch_size = 32)。
因此,我希望我的验证循环可以生成安装有194个批次的108(3447/32≈108)个批次。
我认为这种行为是在我的for循环中处理的:
for dataset in tqdm(dataloaders[phase]):
但是我不知何故在这里出了什么问题。有关我的整个代码,请参见下面的第3点。
如果我上面的假设是正确的,即该错误源于我代码中的for循环,那么我想了解以下信息:
在验证阶段如何调整for循环以正确处理用于验证的批次数量?
下面有两个教程,一个是关于如何进行传输学习(https://discuss.pytorch.org/t/transfer-learning-using-vgg16/20653),另一个是如何在pytorch中进行数据加载(https://pytorch.org/tutorials/beginner/data_loading_tutorial.html),我正在尝试自定义代码,以便我可以对要通过pandas数据框提供的新自定义数据集执行转移学习。
这样,我的训练和验证数据是通过两个数据帧(df_train
和df_val
)提供的,它们都包含两列,一列用于路径,一列用于目标。例如。像这样:
url target
0 C:/Users/aaron/Desktop/pics/4ebd... 9
1 C:/Users/aaron/Desktop/pics/7153... 3
2 C:/Users/aaron/Desktop/pics/3ee6... 3
3 C:/Users/aaron/Desktop/pics/4652... 16
4 C:/Users/aaron/Desktop/pics/28ce... 15
...
以及它们各自的长度:
print(len(df_train))
print(len(df_val))
>> 6186
>> 3447
我的管道如下所示:
class CustomDataset(Dataset):
def __init__(self, df, transform=None):
self.dataframe = df_train
self.transform = transform
def __len__(self):
return len(self.dataframe)
def __getitem__(self, idx):
img_name = self.dataframe.iloc[idx, 0]
img = Image.open(img_name)
img_normalized = self.transform(img)
landmarks = self.dataframe.iloc[idx, 1]
sample = {'data': img_normalized, 'label': int(landmarks)}
return sample
train_dataset = CustomDataset(df_train,transform=transforms.Compose([
transforms.Resize(224),
transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]))
val_dataset = CustomDataset(df_val,transform=transforms.Compose([
transforms.Resize(224),
transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]))
train_loader = torch.utils.data.DataLoader(train_dataset,batch_size=32,shuffle=True, num_workers=0)
val_loader = torch.utils.data.DataLoader(val_dataset,batch_size=32,shuffle=True, num_workers=0)
dataloaders = {'train': train_loader, 'val': val_loader}
dataset_sizes = {'train': len(df_train) ,'val': len(df_val)}
################### Training
from tqdm import tqdm
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
scheduler.step()
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for dataset in tqdm(dataloaders[phase]):
inputs, labels = dataset["data"], dataset["label"]
#print(inputs.type())
inputs = inputs.to(device, dtype=torch.float)
labels = labels.to(device,dtype=torch.long)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
return model
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, len(le.classes_))
model_ft = model_ft.to(device)
criterion = nn.CrossEntropyLoss()
# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
num_epochs=4)
答案 0 :(得分:2)
您的问题似乎在这里:
class CustomDataset(Dataset):
def __init__(self, df, transform=None):
>>>>> self.dataframe = df_train
应该是
self.dataframe = df
在您的情况下,您无意中将火车和val CustomDataset
都设置为df_train
...