STM32F407和ARDUINO UART通信

时间:2017-07-07 15:10:52

标签: stm32f4

我一直试图用UART通信STM32F407 Discovery和Arduino Mega。我有一个MAX232模块.STM32F4的PD8和PD9引脚连接到MAX232模块。模块的输出连接到Arduino的Rx-Tx引脚。所有连接都经过双重检查。 我从STM向Arduino发送了一个字符“A”。在ASCII表中,ASCII表中A的十进制值是65.但是,Arduino的串口读取十进制为95.

我需要一个关于错误接收/传输值的解决方案或想法吗?

谢谢,

/*  STM32F4 CODE */
#include "stm32f4xx_hal.h"
#include <stdio.h>

ADC_HandleTypeDef hadc1;
ADC_HandleTypeDef hadc2;
ADC_HandleTypeDef hadc3;

UART_HandleTypeDef huart3;

void SystemClock_Config(void);
void Error_Handler(void);
static void MX_GPIO_Init(void);
static void MX_USART3_UART_Init(void);
static void MX_ADC1_Init(void);
static void MX_ADC2_Init(void);
static void MX_ADC3_Init(void);

int main(void)
{
  HAL_Init();

  SystemClock_Config();

  MX_GPIO_Init();
  MX_USART3_UART_Init();
  MX_ADC1_Init();
  MX_ADC2_Init();
  MX_ADC3_Init();

  __HAL_UART_ENABLE_IT(&huart3,UART_IT_TC);

  char *buffer[10] = "00000000";

  while (1)
  {
        HAL_UART_Transmit_IT(&huart3,(uint8_t *)buffer,8);
        HAL_Delay(1000);
  }
}
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct;
  RCC_ClkInitTypeDef RCC_ClkInitStruct;
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = 16;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                          |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
  {
  Error_Handler();
  }
  HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);
  HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
  /* SysTick_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
}
/* ADC1 init function */
static void MX_ADC1_Init(void)
{
  ADC_ChannelConfTypeDef sConfig;
  hadc1.Instance = ADC1;
  hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;
  hadc1.Init.Resolution = ADC_RESOLUTION_10B;
  hadc1.Init.ScanConvMode = DISABLE;
  hadc1.Init.ContinuousConvMode = ENABLE;
  hadc1.Init.DiscontinuousConvMode = DISABLE;
  hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
  hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc1.Init.NbrOfConversion = 1;
  hadc1.Init.DMAContinuousRequests = DISABLE;
  hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  if (HAL_ADC_Init(&hadc1) != HAL_OK)
  {
    Error_Handler();
   }
  sConfig.Channel = ADC_CHANNEL_1;
  sConfig.Rank = 1;
  sConfig.SamplingTime = ADC_SAMPLETIME_144CYCLES;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
}
/* ADC2 init function */
static void MX_ADC2_Init(void)
{
  ADC_ChannelConfTypeDef sConfig;
  hadc2.Instance = ADC2;
  hadc2.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;
  hadc2.Init.Resolution = ADC_RESOLUTION_8B;
  hadc2.Init.ScanConvMode = DISABLE;
  hadc2.Init.ContinuousConvMode = DISABLE;
  hadc2.Init.DiscontinuousConvMode = DISABLE;
  hadc2.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
  hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc2.Init.NbrOfConversion = 1;
  hadc2.Init.DMAContinuousRequests = DISABLE;
  hadc2.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  if (HAL_ADC_Init(&hadc2) != HAL_OK)
   {
  Error_Handler();
  }
  sConfig.Channel = ADC_CHANNEL_11;
  sConfig.Rank = 1;
 sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
  if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
}
/* ADC3 init function */
static void MX_ADC3_Init(void)
{
  ADC_ChannelConfTypeDef sConfig;
  hadc3.Instance = ADC3;
  hadc3.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;
  hadc3.Init.Resolution = ADC_RESOLUTION_12B;
  hadc3.Init.ScanConvMode = DISABLE;
  hadc3.Init.ContinuousConvMode = DISABLE;
  hadc3.Init.DiscontinuousConvMode = DISABLE;
  hadc3.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
  hadc3.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc3.Init.NbrOfConversion = 1;
  hadc3.Init.DMAContinuousRequests = DISABLE;
  hadc3.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  if (HAL_ADC_Init(&hadc3) != HAL_OK)
  {
    Error_Handler();
  }
  sConfig.Channel = ADC_CHANNEL_12;
  sConfig.Rank = 1;
  sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
  if (HAL_ADC_ConfigChannel(&hadc3, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
}
/* USART3 init function */
static void MX_USART3_UART_Init(void)
{
  huart3.Instance = USART3;
  huart3.Init.BaudRate = 9600;
  huart3.Init.WordLength = UART_WORDLENGTH_8B;
  huart3.Init.StopBits = UART_STOPBITS_1;
  huart3.Init.Parity = UART_PARITY_NONE;
  huart3.Init.Mode = UART_MODE_TX_RX;
  huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart3.Init.OverSampling = UART_OVERSAMPLING_16;
  if (HAL_UART_Init(&huart3) != HAL_OK)
  {
    Error_Handler();
  }
}
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct;
  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOE_CLK_ENABLE();
  __HAL_RCC_GPIOC_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();
  __HAL_RCC_GPIOD_CLK_ENABLE();
  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOE, Q1_Pin|Q2_Pin|Q3_Pin|Q4_Pin 
                          |A_Pin|B_Pin|C_Pin|D_Pin 
                          |E_Pin|F_Pin|G_Pin|DP_Pin, GPIO_PIN_RESET);
  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(POWER_LED_GPIO_Port, POWER_LED_Pin, GPIO_PIN_SET);
  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOD, IN1_Pin|IN2_Pin|IN3_Pin|IN4_Pin, GPIO_PIN_RESET);
  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOB, Relay_Pin|BUZZER_Pin, GPIO_PIN_RESET);
  /*Configure GPIO pins : Q1_Pin Q2_Pin Q3_Pin Q4_Pin 
                           A_Pin B_Pin C_Pin D_Pin 
                           E_Pin F_Pin G_Pin DP_Pin */
  GPIO_InitStruct.Pin = Q1_Pin|Q2_Pin|Q3_Pin|Q4_Pin 
                          |A_Pin|B_Pin|C_Pin|D_Pin 
                          |E_Pin|F_Pin|G_Pin|DP_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);
  /*Configure GPIO pin : POWER_LED_Pin */
  GPIO_InitStruct.Pin = POWER_LED_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(POWER_LED_GPIO_Port, &GPIO_InitStruct);
  /*Configure GPIO pins : B3_Pin B4_Pin */
  GPIO_InitStruct.Pin = B3_Pin|B4_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  GPIO_InitStruct.Pull = GPIO_PULLDOWN;
  HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
  /*Configure GPIO pin : B0_Pin */
  GPIO_InitStruct.Pin = B0_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  GPIO_InitStruct.Pull = GPIO_PULLDOWN;
  HAL_GPIO_Init(B0_GPIO_Port, &GPIO_InitStruct);
  /*Configure GPIO pins : IN1_Pin IN2_Pin IN3_Pin IN4_Pin */
  GPIO_InitStruct.Pin = IN1_Pin|IN2_Pin|IN3_Pin|IN4_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
  /*Configure GPIO pins : B1_Pin B2_Pin */
  GPIO_InitStruct.Pin = B1_Pin|B2_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  GPIO_InitStruct.Pull = GPIO_PULLDOWN;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
  /*Configure GPIO pin : Digital_Temp_Pin */
  GPIO_InitStruct.Pin = Digital_Temp_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  HAL_GPIO_Init(Digital_Temp_GPIO_Port, &GPIO_InitStruct);
  /*Configure GPIO pins : Relay_Pin BUZZER_Pin */
  GPIO_InitStruct.Pin = Relay_Pin|BUZZER_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
void Error_Handler(void)
{
  while(1) 
  {
  }
} 
#ifdef USE_FULL_ASSERT
void assert_failed(uint8_t* file, uint32_t line)
{
}
#endif

$

2 个答案:

答案 0 :(得分:0)

捕获通信错误的最简单方法是使用逻辑分析器,然后您将确定问题出在哪一方。

答案 1 :(得分:0)

首先,你说“我从STM向Arduino发送了一个字符”A“,但我还没有看到任何相关内容。

您不应将缓冲区定义为char指针。将缓冲区定义为char或uint8_t数组或变量,并使用缓冲区指针调用HAL_UART_Transmit_IT方法,如下所示。

uint8_t buffer = 0x41;   // hex value of A is 0x41

while (1)
{
      HAL_UART_Transmit_IT(&huart3,&buffer,8);
      HAL_Delay(1000);
}

另外,最重要的是STM板和Arduino的波特率应该相同。如果波特率彼此不同,您将读取错误的值。