基于以下Tensorflow中的KNN示例 - 使用图表“预测”某些看不见的数据标签的最佳方法是什么?
from __future__ import print_function
import numpy as np
import tensorflow as tf
# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
# In this example, we limit mnist data
Xtr, Ytr = mnist.train.next_batch(5000) #5000 for training (nn candidates)
Xte, Yte = mnist.test.next_batch(200) #200 for testing
# tf Graph Input
xtr = tf.placeholder("float", [None, 784])
xte = tf.placeholder("float", [784])
# Nearest Neighbor calculation using L1 Distance
# Calculate L1 Distance
distance = tf.reduce_sum(tf.abs(tf.add(xtr, tf.negative(xte))), reduction_indices=1)
# Prediction: Get min distance index (Nearest neighbor)
pred = tf.arg_min(distance, 0)
accuracy = 0.
# Initializing the variables
init = tf.global_variables_initializer()
# Launch the graph
with tf.Session() as sess:
sess.run(init)
# loop over test data
for i in range(len(Xte)):
# Get nearest neighbor
nn_index = sess.run(pred, feed_dict={xtr: Xtr, xte: Xte[i, :]})
# Get nearest neighbor class label and compare it to its true label
print("Test", i, "Prediction:", np.argmax(Ytr[nn_index]), \
"True Class:", np.argmax(Yte[i]))
# Calculate accuracy
if np.argmax(Ytr[nn_index]) == np.argmax(Yte[i]):
accuracy += 1./len(Xte)
print("Done!")
print("Accuracy:", accuracy)
答案 0 :(得分:3)
你可以通过将这些行添加到"的末尾,并使用tf.Session()作为sess:"来实现这一点。
# Generate new (unseen) data
X, y = mnist.test.next_batch(1)
# Compute index of new data
nn_index = sess.run(pred, feed_dict={xtr: Xtr, xte: X[0, :]})
# Print the computed prediction
print("Test", i,
"Prediction:", np.argmax(Ytr[nn_index]),
"True Class:", np.argmax(y[0]))