Weka如何使用Java代码预测新的看不见的实例?

时间:2015-11-17 15:00:03

标签: java machine-learning weka

我写了一个WEKA java代码来训练4个分类器。我保存了分类器模型,并希望使用它们来预测新的看不见的实例(将其视为想要测试推文是正还是负的人)。

我在训练数据上使用了 StringToWordsVector 过滤器。并且要避免" Src和Dest在属性的数量上有所不同"错误我在使用过滤器对新实例进行过程之前使用以下代码来训练过滤器,以尝试预测新实例是正还是负。而且我无法做对。

Classifier cls = (Classifier) weka.core.SerializationHelper.read("models/myModel.model"); //reading one of the trained classifiers


    BufferedReader datafile = readDataFile("Tweets/tone1.ARFF"); //read training data

    Instances data = new Instances(datafile);
    data.setClassIndex(data.numAttributes() - 1);

    Filter filter = new StringToWordVector(50);//keep 50 words
    filter.setInputFormat(data);
    Instances filteredData = Filter.useFilter(data, filter);

    // rebuild classifier
    cls.buildClassifier(filteredData);


    String testInstance= "Text that I want to use as an unseen instance and predict whether it's positive or negative";
    System.out.println(">create test instance"); 
    FastVector attributes = new FastVector(2); 
    attributes.addElement(new Attribute("text", (FastVector) null)); 


    // Add class attribute. 
    FastVector classValues = new FastVector(2); 
    classValues.addElement("Negative"); 
    classValues.addElement("Positive"); 

    attributes.addElement(new Attribute("Tone", classValues)); 
    // Create dataset with initial capacity of 100, and set index of class. 
    Instances tests = new Instances("test istance", attributes, 100); 
    tests.setClassIndex(tests.numAttributes() - 1); 

    Instance test = new Instance(2); 
    // Set value for message attribute 
    Attribute messageAtt = tests.attribute("text"); 
    test.setValue(messageAtt, messageAtt.addStringValue(testInstance)); 

    test.setDataset(tests); 

    Filter filter2 = new StringToWordVector(50);
    filter2.setInputFormat(tests);
    Instances filteredTests = Filter.useFilter(tests, filter2);

    System.out.println(">train Test filter using training data"); 
    Standardize sfilter = new Standardize(); //Match the number of attributes between src and dest.
    sfilter.setInputFormat(filteredData);  // initializing the filter with training set 
    filteredTests = Filter.useFilter(filteredData, sfilter);    // create new test set

ArffSaver saver = new ArffSaver(); //save test data to ARFF file
saver.setInstances(filteredTests); 
        File unseenFile = new File ("Tweets/unseen.ARFF");
        saver.setFile(unseenFile); 
        saver.writeBatch();    

当我尝试使用过滤的训练数据标准化输入数据时,我得到一个新的ARFF文件(unseen.ARFF),但是有2000(相同数量的训练数据)实例,其中大多数值是负数。我不明白为什么或如何删除这些实例。

    System.out.println(">Evaluation"); //without the following 2 lines I get ArrayIndexOutOfBoundException.
    filteredData.setClassIndex(filteredData.numAttributes() - 1);
    filteredTests.setClassIndex(filteredTests.numAttributes() - 1);

    Evaluation eval = new Evaluation(filteredData); 
    eval.evaluateModel(cls, filteredTests); 
    System.out.println(eval.toSummaryString("\nResults\n======\n", false)); 

打印评估结果我想看一下这个实例的正面或负面百分比的百分比,但我得到以下结果。我也希望看到1个实例而不是2000个。如何做到这一点的任何帮助都会很棒。

> Results
======

Correlation coefficient                  0.0285
Mean absolute error                      0.8765
Root mean squared error                  1.2185
Relative absolute error                409.4123 %
Root relative squared error            121.8754 %
Total Number of Instances             2000     

由于

3 个答案:

答案 0 :(得分:1)

使用eval.predictions()。这是一个java.util.ArrayList<Prediction>。然后你可以使用Prediction.weight()方法来获得你的测试变量的正面或负面....

答案 1 :(得分:1)

cls.distributionForInstance(newInst)返回实例的概率分布。查看docs

答案 2 :(得分:0)

我已经找到了一个很好的解决方案,在这里我与你分享我的代码。这将使用WEKA Java代码训练分类器,然后使用它来预测新的看不见的实例。某些部分(如路径)是硬编码的,但您可以轻松修改方法以获取参数。

/**
* This method performs classification of unseen instance. 
* It starts by training a model using a selection of classifiers then classifiy new unlabled instances.
*/

    public static void predict() throws Exception {
        //start by providing the paths for your training and testing ARFF files make sure both files have the same structure and the exact classes in the header

        //initialise classifier
        Classifier classifier = null;

        System.out.println("read training arff");

        Instances train = new Instances(new BufferedReader(new FileReader("Train.arff")));
        train.setClassIndex(0);//in my case the class was the first attribute thus zero otherwise it's the number of attributes -1

        System.out.println("read testing arff");
        Instances unlabeled = new Instances(new BufferedReader(new FileReader("Test.arff")));
        unlabeled.setClassIndex(0);

        // training using a collection of classifiers (NaiveBayes, SMO (AKA SVM), KNN and Decision trees.)
        String[] algorithms = {"nb","smo","knn","j48"};
        for(int w=0; w<algorithms.length;w++){
            if(algorithms[w].equals("nb"))
            classifier = new NaiveBayes();
            if(algorithms[w].equals("smo"))
            classifier = new SMO();
            if(algorithms[w].equals("knn"))
            classifier = new IBk();
            if(algorithms[w].equals("j48"))
            classifier = new J48();

        System.out.println("==========================================================================");
        System.out.println("training using " + algorithms[w] + " classifier");

        Evaluation eval = new Evaluation(train);
        //perform 10 fold cross validation
        eval.crossValidateModel(classifier, train, 10, new Random(1));
        String output = eval.toSummaryString();
        System.out.println(output);

        String classDetails = eval.toClassDetailsString();
        System.out.println(classDetails);

        classifier.buildClassifier(train);
        }

        Instances labeled = new Instances(unlabeled);

        // label instances (use the trained classifier to classify new unseen instances)
        for (int i = 0; i < unlabeled.numInstances(); i++) {
            double clsLabel = classifier.classifyInstance(unlabeled.instance(i));
            labeled.instance(i).setClassValue(clsLabel);
            System.out.println(clsLabel + " -> " + unlabeled.classAttribute().value((int) clsLabel));
        }

            //save the model for future use
            ObjectOutputStream out = new ObjectOutputStream(new FileOutputStream("myModel.dat"));
            out.writeObject(classifier);
            out.close();
            System.out.println("===== Saved model =====");

        }