计算python中两个旋转矩形的交集区域

时间:2017-06-28 08:45:01

标签: python

我有两个2D旋转矩形,定义为(中心x,中心y,高度,宽度)和旋转角度(0-360°)。我如何计算这两个旋转矩形的交叉区域。

3 个答案:

答案 0 :(得分:27)

使用计算几何包,例如, Shapely

import shapely.geometry
import shapely.affinity

class RotatedRect:
    def __init__(self, cx, cy, w, h, angle):
        self.cx = cx
        self.cy = cy
        self.w = w
        self.h = h
        self.angle = angle

    def get_contour(self):
        w = self.w
        h = self.h
        c = shapely.geometry.box(-w/2.0, -h/2.0, w/2.0, h/2.0)
        rc = shapely.affinity.rotate(c, self.angle)
        return shapely.affinity.translate(rc, self.cx, self.cy)

    def intersection(self, other):
        return self.get_contour().intersection(other.get_contour())


r1 = RotatedRect(10, 15, 15, 10, 30)
r2 = RotatedRect(15, 15, 20, 10, 0)

from matplotlib import pyplot
from descartes import PolygonPatch

fig = pyplot.figure(1, figsize=(10, 4))
ax = fig.add_subplot(121)
ax.set_xlim(0, 30)
ax.set_ylim(0, 30)

ax.add_patch(PolygonPatch(r1.get_contour(), fc='#990000', alpha=0.7))
ax.add_patch(PolygonPatch(r2.get_contour(), fc='#000099', alpha=0.7))
ax.add_patch(PolygonPatch(r1.intersection(r2), fc='#009900', alpha=1))

pyplot.show()

enter image description here

答案 1 :(得分:13)

这是一个不使用Python标准库之外的任何库的解决方案。

确定两个矩形的交叉区域可分为两个子问题:

  • 查找交叉点多边形(如果有);
  • 确定交叉点多边形的区域。

使用时,这两个问题都比较容易 矩形的顶点(角)。所以首先你必须确定 这些顶点。假设坐标原点位于中心 矩形,顶点是, 从逆时针方向的左下角开始: (-w/2, -h/2)(w/2, -h/2)(w/2, h/2)(-w/2, h/2)。 在角度a上旋转,并翻译它们 到矩形中心的正确位置,这些变为: (cx + (-w/2)cos(a) - (-h/2)sin(a), cy + (-w/2)sin(a) + (-h/2)cos(a)),其他角点类似。

确定交叉点多边形的一种简单方法如下: 从一个矩形开始作为候选交叉多边形。 然后应用顺序切割过程(如here所述。 简而言之:你依次取第二个矩形的每个边缘, 并从"外部"上的候选交叉点多边形中删除所有部分。由边缘定义的半平面 (向两个方向延伸)。 对所有边执行此操作会留下候选交叉点多边形 仅包含第二个矩形内或其边界内的部分。

可以计算得到的多边形的面积(由一系列顶点定义) 从顶点的坐标。 您总结顶点的叉积 每个边缘(再次按逆时针顺序), 并将其除以2。参见例如www.mathopenref.com/coordpolygonarea.html

足够的理论和解释。这是代码:

from math import pi, cos, sin


class Vector:
    def __init__(self, x, y):
        self.x = x
        self.y = y

    def __add__(self, v):
        if not isinstance(v, Vector):
            return NotImplemented
        return Vector(self.x + v.x, self.y + v.y)

    def __sub__(self, v):
        if not isinstance(v, Vector):
            return NotImplemented
        return Vector(self.x - v.x, self.y - v.y)

    def cross(self, v):
        if not isinstance(v, Vector):
            return NotImplemented
        return self.x*v.y - self.y*v.x


class Line:
    # ax + by + c = 0
    def __init__(self, v1, v2):
        self.a = v2.y - v1.y
        self.b = v1.x - v2.x
        self.c = v2.cross(v1)

    def __call__(self, p):
        return self.a*p.x + self.b*p.y + self.c

    def intersection(self, other):
        # See e.g.     https://en.wikipedia.org/wiki/Line%E2%80%93line_intersection#Using_homogeneous_coordinates
        if not isinstance(other, Line):
            return NotImplemented
        w = self.a*other.b - self.b*other.a
        return Vector(
            (self.b*other.c - self.c*other.b)/w,
            (self.c*other.a - self.a*other.c)/w
        )


def rectangle_vertices(cx, cy, w, h, r):
    angle = pi*r/180
    dx = w/2
    dy = h/2
    dxcos = dx*cos(angle)
    dxsin = dx*sin(angle)
    dycos = dy*cos(angle)
    dysin = dy*sin(angle)
    return (
        Vector(cx, cy) + Vector(-dxcos - -dysin, -dxsin + -dycos),
        Vector(cx, cy) + Vector( dxcos - -dysin,  dxsin + -dycos),
        Vector(cx, cy) + Vector( dxcos -  dysin,  dxsin +  dycos),
        Vector(cx, cy) + Vector(-dxcos -  dysin, -dxsin +  dycos)
    )

def intersection_area(r1, r2):
    # r1 and r2 are in (center, width, height, rotation) representation
    # First convert these into a sequence of vertices

    rect1 = rectangle_vertices(*r1)
    rect2 = rectangle_vertices(*r2)

    # Use the vertices of the first rectangle as
    # starting vertices of the intersection polygon.
    intersection = rect1

    # Loop over the edges of the second rectangle
    for p, q in zip(rect2, rect2[1:] + rect2[:1]):
        if len(intersection) <= 2:
            break # No intersection

        line = Line(p, q)

        # Any point p with line(p) <= 0 is on the "inside" (or on the boundary),
        # any point p with line(p) > 0 is on the "outside".

        # Loop over the edges of the intersection polygon,
        # and determine which part is inside and which is outside.
        new_intersection = []
        line_values = [line(t) for t in intersection]
        for s, t, s_value, t_value in zip(
            intersection, intersection[1:] + intersection[:1],
            line_values, line_values[1:] + line_values[:1]):
            if s_value <= 0:
                new_intersection.append(s)
            if s_value * t_value < 0:
                # Points are on opposite sides.
                # Add the intersection of the lines to new_intersection.
                intersection_point = line.intersection(Line(s, t))
                new_intersection.append(intersection_point)

        intersection = new_intersection

    # Calculate area
    if len(intersection) <= 2:
        return 0

    return 0.5 * sum(p.x*q.y - p.y*q.x for p, q in
                     zip(intersection, intersection[1:] + intersection[:1]))


if __name__ == '__main__':
    r1 = (10, 15, 15, 10, 30)
    r2 = (15, 15, 20, 10, 0)
    print(intersection_area(r1, r2))

答案 2 :(得分:3)

"".contains("")       // true
"".contains("")       // true
"‍‍‍".contains("‍‍‍")      // true
"‍‍‍".contains("")      // true. In swift 3, this prints false
"‍‍‍".contains("\u{200D}") // false
"‍‍‍".contains("")      // true. In swift 3, this prints false
"‍‍‍".contains("")      // true

enter image description here

在查看此问题的可能重复页面后,我找不到完整的python答案,所以这是我使用屏蔽的解决方案。此功能适用于任何角度的复杂形状,而不仅仅是矩形

您将旋转的矩形的2个轮廓作为参数传递,如果没有发生交叉,则返回“无”,或者相交于原始图像的相交区域的图像和该图像的左/上位置取自

使用python,cv2和numpy

intersection, pnt = contourIntersection(rect1, rect2)

要完成答案,您可以使用上述功能,使用2个旋转矩形的CenterX,CenterY,Width,Height和Angle的值,我添加了以下功能。简单地将代码底部的Rect1和Rect2属性更改为您自己的

import cv2
import math
import numpy as np


def contourIntersection(con1, con2, showContours=False):

    # skip if no bounding rect intersection
    leftmost1 = tuple(con1[con1[:, :, 0].argmin()][0])
    topmost1 = tuple(con1[con1[:, :, 1].argmin()][0])
    leftmost2 = tuple(con2[con2[:, :, 0].argmin()][0])
    topmost2 = tuple(con2[con2[:, :, 1].argmin()][0])

    rightmost1 = tuple(con1[con1[:, :, 0].argmax()][0])
    bottommost1 = tuple(con1[con1[:, :, 1].argmax()][0])
    rightmost2 = tuple(con2[con2[:, :, 0].argmax()][0])
    bottommost2 = tuple(con2[con2[:, :, 1].argmax()][0])

    if rightmost1[0] < leftmost2[0] or rightmost2[0] < leftmost1[0] or bottommost1[1] < topmost2[1] or bottommost2[1] < topmost1[1]:
        return None, None

    # reset top / left to 0
    left = leftmost1[0] if leftmost1[0] < leftmost2[0] else leftmost2[0]
    top = topmost1[1] if topmost1[1] < topmost2[1] else topmost2[1]

    newCon1 = []
    for pnt in con1:

        newLeft = pnt[0][0] - left
        newTop = pnt[0][1] - top

        newCon1.append([newLeft, newTop])
    # next
    con1_new = np.array([newCon1], dtype=np.int32)

    newCon2 = []
    for pnt in con2:

        newLeft = pnt[0][0] - left
        newTop = pnt[0][1] - top

        newCon2.append([newLeft, newTop])
    # next
    con2_new = np.array([newCon2], dtype=np.int32)

    # width / height
    right1 = rightmost1[0] - left
    bottom1 = bottommost1[1] - top
    right2 = rightmost2[0] - left
    bottom2 = bottommost2[1] - top

    width = right1 if right1 > right2 else right2
    height = bottom1 if bottom1 > bottom2 else bottom2

    # create images
    img1 = np.zeros([height, width], np.uint8)
    cv2.drawContours(img1, con1_new, -1, (255, 255, 255), -1)

    img2 = np.zeros([height, width], np.uint8)
    cv2.drawContours(img2, con2_new, -1, (255, 255, 255), -1)

    # mask images together using AND
    imgIntersection = cv2.bitwise_and(img1, img2)

    if showContours:
        img1[img1 > 254] = 128
        img2[img2 > 254] = 100

        imgAll = cv2.bitwise_or(img1, img2)
        cv2.imshow('Merged Images', imgAll)

    # end if

    if not imgIntersection.sum():
        return None, None

    # trim
    while not imgIntersection[0].sum():
        imgIntersection = np.delete(imgIntersection, (0), axis=0)
        top += 1

    while not imgIntersection[-1].sum():
        imgIntersection = np.delete(imgIntersection, (-1), axis=0)

    while not imgIntersection[:, 0].sum():
        imgIntersection = np.delete(imgIntersection, (0), axis=1)
        left += 1

    while not imgIntersection[:, -1].sum():
        imgIntersection = np.delete(imgIntersection, (-1), axis=1)

    return imgIntersection, (left, top)
# end function