我正在尝试为我的代码找到合适的参数,这是扩展卡尔曼滤波器的一个回溯。我有6个嵌套for循环,每个参数一个。目前,当每个参数有3个可能的值时,代码平均需要大约5分钟才能运行,但是当我增加参数数量时,我的时间会增加为n ^ 6。我有点担心。
有什么办法可以优化代码以节省更多时间吗?
PS - 只使用任何数据文件而不是给定的Reddy.csv(1180行数据) PPS - 最后我需要找到最小MSE的i,j,k,l,m,n值。
以下是代码:
start.time <- Sys.time()
library(invgamma)
w = read.csv("Reddy.csv")
q = ts(w[2])
num = length(q)
f = function(x){
f1 = sqrt(x)
return(f1)
}
h = function(x){
h1 = x**3
return(h1)
}
ae1 = seq(24,26,0.1)
ae2 = seq(24,26,0.1)
be1 = seq(0.1,2,0.1)
be2 = seq(0.1,2,0.1)
a = seq(1,3,0.1)
b = seq(0.1,2,0.1)
count = 0
MSE = matrix(nrow = length(ae1)*length(ae2)*length(be1)*length(be2)*length(a)*length(b), ncol =7)
for (i in ae1){
for (j in ae2){
for (k in be1){
for (l in be2){
for (m in a){
for (n in b){
d = rep(0,num)
xt = rep(0,num)
yt = rep(0,num)
fx = rep(0,num)
hx = rep(0,num)
e = rinvgamma(num,i,k)
g = rinvgamma(num,j,l)
for(o in 2:num){
fx[o] = f(xt[o-1])
xt[o] = m*fx[o] + e[o-1]
hx[o] = h(xt[o])
yt[o]= n*hx[o] +g[o]
d[o] = (yt[o] - q[o])**2
}
count <- count + 1
MSE[count,1] = mean(d)
MSE[count,2] = i
MSE[count,3] = j
MSE[count,4] = k
MSE[count,5] = l
MSE[count,6] = m
MSE[count,7] = n
t = rbind(mean(d),i,j,k,l,m,n)
print(t)
}
}
}
}
}
}
end.time <- Sys.time()
time.taken <- end.time - start.time
time.taken
m = which.min(MSE[,1])
MSE[m,]
答案 0 :(得分:0)
通过矢量化一些最内部的循环计算,可以实现进一步的优化,
start.time <- Sys.time()
library(invgamma)
w = rnorm(1180)
q = ts(w)
num = length(q)
f = function(x){
f1 = sqrt(x)
return(f1)
}
h = function(x){
h1 = x**3
return(h1)
}
ae1 = seq(24,26,1)
ae2 = seq(24,26,1)
be1 = seq(0.1,2,0.7)
be2 = seq(0.1,2,0.7)
a = seq(1,3,1)
b = seq(0.1,2,0.7)
count = 0
MSE = matrix(nrow = length(ae1)*length(ae2)*length(be1)*length(be2)*length(a)*length(b), ncol =7)
for (i in ae1){
for (j in ae2){
for (k in be1){
for (l in be2){
for (m in a){
for (n in b){
d = rep(0,num)
xt = rep(0,num)
yt = rep(0,num)
fx = rep(0,num)
hx = rep(0,num)
e = rinvgamma(num,i,k)
g = rinvgamma(num,j,l)
for(o in 2:num){
fx[o] = f(xt[o-1])
xt[o] = m*fx[o] + e[o-1]
}
hx = h(xt)
yt = n*hx +g
d = (yt - q)**2
count <- count + 1
MSE[count,1] = mean(d)
MSE[count,2] = i
MSE[count,3] = j
MSE[count,4] = k
MSE[count,5] = l
MSE[count,6] = m
MSE[count,7] = n
## t = rbind(mean(d),i,j,k,l,m,n)
## print(t)
}
}
}
}
}
}
end.time <- Sys.time()
time.taken <- end.time - start.time
time.taken
m = which.min(MSE[,1])
MSE[m,]
在我的笔记本电脑上,这可以使代码快几倍。
编辑:
如果组合太多,并且您不想创建和修改大型矩阵,因为您只关心MSE的最小值,您只能记录最佳组合,如下所示:< / p>
MSEopt <- Inf
for (i in ae1){
for (j in ae2){
for (k in be1){
for (l in be2){
for (m in a){
for (n in b){
d = rep(0,num)
xt = rep(0,num)
yt = rep(0,num)
fx = rep(0,num)
hx = rep(0,num)
e = rinvgamma(num,i,k)
g = rinvgamma(num,j,l)
for(o in 2:num){
fx[o] = f(xt[o-1])
xt[o] = m*fx[o] + e[o-1]
}
hx = h(xt)
yt = n*hx +g
d = (yt - q)**2
if (mean(d) < MSEopt) {
## print(MSEopt)
MSEopt <- mean(d)
best_combn <- list(i = i, j = j, k = k, l = l, m = m, n = n)
}
}
}
}
}
}
}