我需要绘制3个不同的图,设置相同的比例范围颜色。 我有3个不同范围的矩阵。
例如:
range(matrixA)
# 0.60 0.85
range(matrixB)
# 0.65 0.95
range(matrixA)
# 0.5 1.0
我想为这些情节填充相同的颜色。例如,对于差异图中的所有0.8值,如果在第一个图中0.8橙色,我希望不同图中的所有0.8值都是相同的橙色。
我现在的问题是:
在第一个图中,最大值的颜色为红色,则值0.85为红色。
在第二个图中,最大值为红色,但在这种情况下,最大值为0.95并且出现问题。
我的代码:
mat.melted <- melt(matrixA)
colnames(mat.melted) <- c("p","c","v")
p <- ggplot(mat.melted, aes(x=c,y=p,fill=v) +
geom-tile() +
scale_fill_gradintn(limits = c(min(as.vector(matrixA)), max(as.vector(matrixA))),
colors = c("yellow","orange","red"))
答案 0 :(得分:3)
您需要为所有这些设置相同的范围(颜色条的限制),并为其指定颜色。
rng = range(matrixA, matrixB, matrixC)
并将其添加到您的ggplot
代码中:
g + scale_fill_gradient2(low="green", mid="lightblue", high="red", #colors in the scale
midpoint=mean(rng), #same midpoint for plots (mean of the range)
breaks=seq(0,1,0.25), #breaks in the scale bar
limits=c(floor(rng[1]), ceiling(rng[2])))
以下示例可帮助您获得所需内容:
x <- matrix(60:85, 5)/100
y <- matrix(65:95, 5)/100
z <- matrix(50:100, 5)/100
rng = range(c((x), (y), (z)))
library(reshape)
library(ggplot2)
ggplot(data = melt(x)) + geom_tile(aes(x=X1,y=X2,fill = value)) +
scale_fill_gradient2(low="green", mid="lightblue", high="red", #colors in the scale
midpoint=mean(rng), #same midpoint for plots (mean of the range)
breaks=seq(0,1,0.25), #breaks in the scale bar
limits=c(floor(rng[1]), ceiling(rng[2]))) + #same limits for plots
ggtitle("X")
ggplot(data = melt(y)) + geom_tile(aes(x=X1,y=X2,fill = value)) +
scale_fill_gradient2(low="green", mid="lightblue", high="red",
midpoint=mean(rng),
breaks=seq(0,1,0.25),
limits=c(floor(rng[1]), ceiling(rng[2]))) +
ggtitle("Y")
ggplot(data = melt(z)) + geom_tile(aes(x=X1,y=X2,fill = value)) +
scale_fill_gradient2(low="green", mid="lightblue", high="red",
midpoint=mean(rng),
breaks=seq(0,1,0.25),
limits=c(floor(rng[1]), ceiling(rng[2]))) +
ggtitle("Z")
这会给你:
答案 1 :(得分:0)
将限制设置在0.5和1之间
mat.melted <- melt(matrixA)
colnames(mat.melted) <- c("p","c","v")
p <- ggplot(mat.melted, aes(x=c,y=p,fill=v) +
geom-tile() +
scale_fill_gradintn(colors = c("yellow","orange","red")),limits=c(0.5,1))