我收到的错误似乎是Keras初学者的常见问题。我试图将彩色图像分类为'某事'或'not_something'并运行基本模型,这样我就可以调整超参数以更好地理解它们的作用。
如果有人可以解释为什么我在model.fit中专门得到我的错误然后解释我应该关注/寻找一般意义上的维度(在火车和测试集中)我想要它。我不确定如果二元分类器为2,Dense(单位)是否应为1,你能解释一下吗?
错误:
```
ValueError: Error when checking target: expected dense_18 to have 4 dimensions, but got array with shape (584, 1)
```
代码:
```
from identify_mounds import *
from PIL import Image
import numpy as np
np.random.seed(6)
import os
import subprocess
from collections import defaultdict
import pickle
from scipy.misc import imread
from sklearn.model_selection import train_test_split
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Convolution2D, MaxPooling2D
from keras.utils import np_utils
def train_nomound_mound(dic):
X = []
y = []
X_ = []
for im in dic:
X.extend(dic[im]['img_lst'])
y.extend(dic[im]['label'])
for im in X:
arr = imread(im)
X_.append(arr)
X_ = (np.array(X_).reshape(779, 4, 16, 16)/255).astype('float32')
y = np.array(y).astype('float32')
X_train, X_test, y_train, y_test = train_test_split(X_, y, stratify = y)
#Demensions: X_train: (584, 4, 16, 16), y_train: (584,), X_test: (195, 4, 16, 16), y_test: (195,)
model = Sequential()
batch_size = 128
nb_epoch = 12
nb_filters = 32
kernel_size = (3, 3)
input_shape = (4, 16, 16)
pool_size = (2, 2)
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1], activation='relu', input_shape=input_shape))
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1], activation='relu'))
# model.add(MaxPooling2D(pool_size=pool_size))
model.add(Dropout(0.25))
model.add(Dense(32, activation='relu'))
model.add(Dropout(.50))
model.add(Dense(1, activation='relu'))
model.compile(loss = 'categorical_crossentropy', optimizer='Adadelta', metrics=['accuracy'])
model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=1, validation_data=(X_test, y_test))
score = model.evaluate(X_test, y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
```
答案 0 :(得分:0)
当使用binary_crossentropy
损失时,具有单个神经元的致密层是合适的。 categorical_crossentropy
丢失需要单热编码和与最终输出层中的类别相同数量的神经元。来自Keras loss documentation:
注意:使用categorical_crossentropy损失时,您的目标 应该是分类格式(例如,如果你有10个类,那么 每个样本的目标应该是10维向量 all-zeros期望在对应于类的索引处为1 样本)。
Keras MNIST MLP example简明扼要地阐述了to_categorical
函数的单热编码。