我想通过在R中使用给定的删失向量应用以下数据来估计Weibull分布的最大似然参数:
data = 9 2 11 49 7 5 3 36 30 6 62 5 3 29 29 1 13 1 24 11 9 4 7 15 11 15 1 1 1 1 2 6 12 12 28 14 14 57 17 4 2 3 6 21 6 16 19 28 18 19 9 59 12 3 27 8 26 19 47 68 17 15 25 25 6 54 1 2 11 4 1 36 2 5 5 3 38 3 1 10 69 1 8 3 17 21 19 11 1 6 1 1 18 2 51 6 12 11 13 3 19 16 18 28 10 26 32 6 25 1 44
cens = 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
如果有人能帮助我,我会非常感激。
答案 0 :(得分:0)
使用Abrem
包:
install.packages("abrem", repos="http://R-Forge.R-project.org")
如果您遇到类似问题,可能需要手动安装旧版本的RccpArmadillo:
install.packages("https://cran.r-project.org/src/contrib/Archive/RcppArmadillo/RcppArmadillo_0.6.100.0.0.tar.gz", repos=NULL, type="source")
然后拥有它:
library(abrem)
a = Abrem(fail = c(2, 11, 49, ...), susp = c(9, 44))
a = abrem.fit(a, dist = 'weibull', method.fit = 'mle')
a = abrem.conf(a) # add 90% confidence bands
plot.abrem(a) # plot the points and fit distribution
print.abrem(a) # print the results, which includes the fitted parameters
我可能会将您的失败与暂停数据混淆,但希望这个示例能够清楚说明每个数据的去向。