我一直在R中做一些数据分析,我试图找出如何使我的数据适合3参数Weibull分布。我找到了如何使用2参数Weibull来完成它,但是在找到如何使用3参数进行操作方面做得不够。
以下是我使用fitdistr
包中MASS
函数拟合数据的方法:
y <- fitdistr(x[[6]], 'weibull')
x[[6]]
是我数据的子集,y是我存储拟合结果的地方。
答案 0 :(得分:8)
首先,您可能需要查看FAdist package。但是,从rweibull3
到rweibull
:
> rweibull3
function (n, shape, scale = 1, thres = 0)
thres + rweibull(n, shape, scale)
<environment: namespace:FAdist>
,类似地从dweibull3
到dweibull
> dweibull3
function (x, shape, scale = 1, thres = 0, log = FALSE)
dweibull(x - thres, shape, scale, log)
<environment: namespace:FAdist>
所以我们有这个
> x <- rweibull3(200, shape = 3, scale = 1, thres = 100)
> fitdistr(x, function(x, shape, scale, thres)
dweibull(x-thres, shape, scale), list(shape = 0.1, scale = 1, thres = 0))
shape scale thres
2.42498383 0.85074556 100.12372297
( 0.26380861) ( 0.07235804) ( 0.06020083)
编辑如评论中所述,尝试以这种方式调整发行版时会出现各种警告
Error in optim(x = c(60.7075705026659, 60.6300379017397, 60.7669410153573, :
non-finite finite-difference value [3]
There were 20 warnings (use warnings() to see them)
Error in optim(x = c(60.7075705026659, 60.6300379017397, 60.7669410153573, :
L-BFGS-B needs finite values of 'fn'
In dweibull(x, shape, scale, log) : NaNs produced
对我来说起初它只是NaNs produced
,这不是我第一次看到它所以我认为它没有那么有意义,因为估计是好的。经过一番搜索,这似乎是一个非常受欢迎的问题,我既找不到原因也找不到解决方案。一种替代方法可能是使用stats4
包和mle()
函数,但它似乎也存在一些问题。但是我可以让你使用danielmedic的code修改版本,我已经检查了几次:
thres <- 60
x <- rweibull(200, 3, 1) + thres
EPS = sqrt(.Machine$double.eps) # "epsilon" for very small numbers
llik.weibull <- function(shape, scale, thres, x)
{
sum(dweibull(x - thres, shape, scale, log=T))
}
thetahat.weibull <- function(x)
{
if(any(x <= 0)) stop("x values must be positive")
toptim <- function(theta) -llik.weibull(theta[1], theta[2], theta[3], x)
mu = mean(log(x))
sigma2 = var(log(x))
shape.guess = 1.2 / sqrt(sigma2)
scale.guess = exp(mu + (0.572 / shape.guess))
thres.guess = 1
res = nlminb(c(shape.guess, scale.guess, thres.guess), toptim, lower=EPS)
c(shape=res$par[1], scale=res$par[2], thres=res$par[3])
}
thetahat.weibull(x)
shape scale thres
3.325556 1.021171 59.975470
答案 1 :(得分:0)
另一个选择是软件包“ lmom”。 L-矩技术的估计
library(lmom)
thres <- 60
x <- rweibull(200, 3, 1) + thres
moments = samlmu(x, sort.data = TRUE)
log.moments <- samlmu( log(x), sort.data = TRUE )
weibull_3parml <- pelwei(moments)
weibull_3parml
zeta beta delta
59.993075 1.015128 3.246453
但是我不知道如何在此包装或上述解决方案中进行一些拟合优度统计。其他软件包则可以轻松进行拟合优度统计。无论如何,您可以使用ks.test或chisq.test
之类的替代方法