由于Adam Optimizer保持一对平均值,如渐变的均值/方差,我想知道它应该如何正确处理重量衰减。我已经看到了两种实现它的方法。
仅根据每个小批量明确的客观损失,衰减权重更新梯度的均值/方差。 (以下代码取自https://github.com/dmlc/mxnet/blob/v0.7.0/python/mxnet/optimizer.py)
weight[:] -= lr*mean/(sqrt(variance) + self.epsilon)
wd = self._get_wd(index)
if wd > 0.:
weight[:] -= (lr * wd) * weight
根据客观损失+正则化损失更新梯度的均值/方差,并像往常一样更新权重。 (以下代码取自https://github.com/dmlc/mxnet/blob/master/src/operator/optimizer_op-inl.h#L210)
grad = scalar<DType>(param.rescale_grad) * grad +
scalar<DType>(param.wd) * weight;
// stuff
Assign(out, req[0],
weight -
scalar<DType>(param.lr) * mean /
(F<square_root>(var) + scalar<DType>(param.epsilon)));
这两种方法有时会在训练结果上显示出显着差异。而我实际上认为第一个更有意义(并且发现它会不时地提供更好的结果)。 Caffe和旧版本的mxnet遵循第一种方法,而火炬,tensorflow和新版本的mxnet遵循第二种方法。
真的很感谢你的帮助!
答案 0 :(得分:6)
编辑:另请参阅刚刚合并到TF的this PR。
当使用纯SGD(没有动量)作为优化器时,权重衰减与向损失添加L2正则化项是一回事。 使用任何其他优化器时,情况并非如此。
体重衰减(不知道如何在这里使用TeX,请原谅我的伪符号):
w[t+1] = w[t] - learning_rate * dw - weight_decay * w
L2-正规化:
loss = actual_loss + lambda * 1/2 sum(||w||_2 for w in network_params)
计算L2正则化中额外项的梯度得到lambda * w
,从而将其插入SGD更新方程
dloss_dw = dactual_loss_dw + lambda * w
w[t+1] = w[t] - learning_rate * dw
与重量衰减相同,但将lambda
与learning_rate
混合。任何其他优化器,即使是具有动量的SGD,也会为L2正则化提供不同的权重衰减更新规则!有关详细信息,请参阅文章Fixing weight decay in Adam。 (编辑:AFAIK,this 1987 Hinton paper介绍&#34;体重衰减&#34;,字面意思为&#34;每次更新权重时,其数量也会减少0.4%&#34;在第10页)
话虽如此,似乎并没有支持&#34;正确的&#34; TensorFlow中的重量衰减了。讨论它有一些问题,特别是因为上面的论文。
实现它的一种可能方法是编写一个op,在每个优化器步骤之后手动执行衰减步骤。另一种方式,就是我目前正在做的,就是使用额外的SGD优化器来减轻重量,并且&#34;附加&#34;它到你的train_op
。不过,这些都只是粗略的解决方案。我目前的代码:
# In the network definition:
with arg_scope([layers.conv2d, layers.dense],
weights_regularizer=layers.l2_regularizer(weight_decay)):
# define the network.
loss = # compute the actual loss of your problem.
train_op = optimizer.minimize(loss, global_step=global_step)
if args.weight_decay not in (None, 0):
with tf.control_dependencies([train_op]):
sgd = tf.train.GradientDescentOptimizer(learning_rate=1.0)
train_op = sgd.minimize(tf.add_n(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)))
这有点使用TensorFlow提供的簿记。请注意,arg_scope
负责将每个图层的L2正则化项附加到REGULARIZATION_LOSSES
图表键,然后我使用SGD对其进行求和并进行优化,如上所示,对应于实际重衰变。
希望有所帮助,如果有人为此获得更好的代码片段,或者TensorFlow更好地实现它(即在优化器中),请分享。
答案 1 :(得分:1)
我遇到了同样的问题。我认为我从here获得的这段代码对您有用。它通过继承signupUser
来实现权重衰减亚当优化器。这是我找到的最干净的解决方案:
tf.train.Optimizer
您可以通过以下方式使用它(我进行了一些更改以使其在更一般的上下文中有用),该函数将返回一个class AdamWeightDecayOptimizer(tf.train.Optimizer):
"""A basic Adam optimizer that includes "correct" L2 weight decay."""
def __init__(self,
learning_rate,
weight_decay_rate=0.0,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-6,
exclude_from_weight_decay=None,
name="AdamWeightDecayOptimizer"):
"""Constructs a AdamWeightDecayOptimizer."""
super(AdamWeightDecayOptimizer, self).__init__(False, name)
self.learning_rate = learning_rate
self.weight_decay_rate = weight_decay_rate
self.beta_1 = beta_1
self.beta_2 = beta_2
self.epsilon = epsilon
self.exclude_from_weight_decay = exclude_from_weight_decay
def apply_gradients(self, grads_and_vars, global_step=None, name=None):
"""See base class."""
assignments = []
for (grad, param) in grads_and_vars:
if grad is None or param is None:
continue
param_name = self._get_variable_name(param.name)
m = tf.get_variable(
name=param_name + "/adam_m",
shape=param.shape.as_list(),
dtype=tf.float32,
trainable=False,
initializer=tf.zeros_initializer())
v = tf.get_variable(
name=param_name + "/adam_v",
shape=param.shape.as_list(),
dtype=tf.float32,
trainable=False,
initializer=tf.zeros_initializer())
# Standard Adam update.
next_m = (
tf.multiply(self.beta_1, m) + tf.multiply(1.0 - self.beta_1, grad))
next_v = (
tf.multiply(self.beta_2, v) + tf.multiply(1.0 - self.beta_2,
tf.square(grad)))
update = next_m / (tf.sqrt(next_v) + self.epsilon)
# Just adding the square of the weights to the loss function is *not*
# the correct way of using L2 regularization/weight decay with Adam,
# since that will interact with the m and v parameters in strange ways.
#
# Instead we want ot decay the weights in a manner that doesn't interact
# with the m/v parameters. This is equivalent to adding the square
# of the weights to the loss with plain (non-momentum) SGD.
if self._do_use_weight_decay(param_name):
update += self.weight_decay_rate * param
update_with_lr = self.learning_rate * update
next_param = param - update_with_lr
assignments.extend(
[param.assign(next_param),
m.assign(next_m),
v.assign(next_v)])
return tf.group(*assignments, name=name)
def _do_use_weight_decay(self, param_name):
"""Whether to use L2 weight decay for `param_name`."""
if not self.weight_decay_rate:
return False
if self.exclude_from_weight_decay:
for r in self.exclude_from_weight_decay:
if re.search(r, param_name) is not None:
return False
return True
def _get_variable_name(self, param_name):
"""Get the variable name from the tensor name."""
m = re.match("^(.*):\\d+$", param_name)
if m is not None:
param_name = m.group(1)
return param_name
可以在Session中使用:
train_op