有人已经问过similar question,但是那里给出的解决方案对我不起作用。
我正在尝试在tensorflow中使用Adam优化器。以下是我的代码的一部分:
adamOptimizer = tf.train.AdamOptimizer(learning_rate=0.001, beta1=0.9,
beta2=0.999, epsilon=1e-08, use_locking=False, name='Adam')
print('Optimizer was created!')
# Create a variable to track the global step.
global_step = tf.Variable(0, name='global_step', trainable=False)
#Initialize variables
vars_to_init = ae.get_variables_to_init(n)
vars_to_init.append(global_step)
vars_to_init.append
sess.run(tf.variables_initializer(vars_to_init))
# create an optimizer
train_op = adamOptimizer.minimize(loss, global_step=global_step)
首次使用train_op后引发以下错误:
FailedPreconditionError(参见上面的回溯):尝试使用未初始化的值pretrain_1 / beta2_power [[节点:pretrain_1 / beta2_power /读取= IdentityT = DT_FLOAT,_class = [“loc:@ autoencoder_variables / weights1”],_ device =“/ job:localhost / replica:0 / task:0 / cpu:0”]] < / p>
如果我尝试添加一行
vars_to_init.append(beta2_power)
我收到以下错误:
NameError:未定义全局名称'beta2_power'
如果我遵循similar question的建议并用sess.run(tf.initialize_all_variables())替换sess.run(tf.variables_initializer(vars_to_init)), 运行此行后,我收到以下错误:
FailedPreconditionError:尝试使用未初始化的值autoencoder_variables / biases1 [[节点:autoencoder_variables / biases1 / read = IdentityT = DT_FLOAT,_class = [“loc:@ autoencoder_variables / biases1”],_ device =“/ job:localhost / replica:0 / task:0 / cpu:0”]] < / p>
当我使用Gradient Descent优化器时,我没有遇到任何问题......
我做错了什么?使用此优化程序的正确方法是什么?
EDIT 有关该类的更多详细信息,以阐明autoencoder_variables:
class AutoEncoder(object):
_weights_str = "weights{0}"
_biases_str = "biases{0}"
def __init__(self, shape, sess):
self.__shape = shape
self.__num_hidden_layers = len(self.__shape) - 2
self.__variables = {}
self.__sess = sess
self._setup_variables()
@property
def shape(self):
return self.__shape
@property
def num_hidden_layers(self):
return self.__num_hidden_layers
@property
def session(self):
return self.__sess
def __getitem__(self, item):
return self.__variables[item]
def __setitem__(self, key, value):
self.__variables[key] = value
def _setup_variables(self):
with tf.name_scope("autoencoder_variables"):
for i in xrange(self.__num_hidden_layers + 1):
# Train weights
name_w = self._weights_str.format(i + 1)
w_shape = (self.__shape[i], self.__shape[i + 1])
a = tf.mul(4.0, tf.sqrt(6.0 / (w_shape[0] + w_shape[1])))
w_init = tf.random_uniform(w_shape, -1 * a, a)
self[name_w] = tf.Variable(w_init,
name=name_w,
trainable=True)
# Train biases
name_b = self._biases_str.format(i + 1)
b_shape = (self.__shape[i + 1],)
b_init = tf.zeros(b_shape)
self[name_b] = tf.Variable(b_init, trainable=True, name=name_b)
if i <= self.__num_hidden_layers:
# Hidden layer fixed weights (after pretraining before fine tuning)
self[name_w + "_fixed"] = tf.Variable(tf.identity(self[name_w]),
name=name_w + "_fixed",
trainable=False)
# Hidden layer fixed biases
self[name_b + "_fixed"] = tf.Variable(tf.identity(self[name_b]),
name=name_b + "_fixed",
trainable=False)
# Pretraining output training biases
name_b_out = self._biases_str.format(i + 1) + "_out"
b_shape = (self.__shape[i],)
b_init = tf.zeros(b_shape)
self[name_b_out] = tf.Variable(b_init,
trainable=True,
name=name_b_out)
def _w(self, n, suffix=""):
return self[self._weights_str.format(n) + suffix]
def _b(self, n, suffix=""):
return self[self._biases_str.format(n) + suffix]
def get_variables_to_init(self, n):
assert n > 0
assert n <= self.__num_hidden_layers + 1
vars_to_init = [self._w(n), self._b(n)]
if n <= self.__num_hidden_layers:
vars_to_init.append(self._b(n, "_out"))
if 1 < n <= self.__num_hidden_layers+1:
# Fixed matrices for learning of deeper layers
vars_to_init.append(self._w(n - 1, "_fixed"))
vars_to_init.append(self._b(n - 1, "_fixed"))
return vars_to_init
答案 0 :(得分:0)
问题是我使用一个变量值来初始化其他变量(它引发了在初始化期间使用未初始化变量的错误)。
而不是在初始化期间使用另一个变量
self[name_b + "_fixed"] = tf.Variable(tf.identity(self[name_b]),
name=name_b + "_fixed",
trainable=False)
我随机初始化
self[name_b + "_fixed"] = tf.Variable(init_b,
name=name_b + "_fixed",
trainable=False)
在训练后将其分配给另一个变量:
ae[name_w + "_fixed"] = tf.identity(ae[name_w])