我正在尝试使用行中的其他值为较低置信区间创建新列。我已在public-health-cis
上编写(并发布)置信区间计算作为包pypi
。这些函数接受浮点值并返回浮点数。
在我的分析脚本中,我试图从pandas数据帧中调用此函数。我已经尝试了几种方法来尝试使其工作,但无济于事。
df_for_ci_calcs = df[['Value', 'Count', 'Denominator']].copy()
df_for_ci_calcs = df_for_ci_calcs.applymap(lambda x: -1 if x == '*' else x)
df_for_ci_calcs = df_for_ci_calcs.astype(np.float)
df['LowerCI'].apply(lambda x: public_health_cis.wilson_lower(df_for_ci_calcs['Value'].astype(float),
df_for_ci_calcs['Count'].astype(float),
df_for_ci_calcs['Denominator'].astype(float), indicator.rate))
回过头来追溯:
内部服务器错误:/
df['LowerCI'].apply(lambda x: public_health_cis.wilson_lower(df_for_ci_calcs['Value'].astype(float), df_for_ci_calcs['Count'].astype(float), df_for_ci_calcs['Denominator'].astype(float), indica
tor.rate))
TypeError: cannot convert the series to <class 'float'>
我也尝试过使用:
df['LowerCI'] = df_for_ci_calcs.applymap(lambda x: public_health_cis.wilson_lower(df_for_ci_calcs['Value'], df_for_ci_calcs['Count'],
df_for_ci_calcs['Denominator'], indicator.rate), axis=1)
传递错误:
applymap() got an unexpected keyword argument 'axis'
当我取出轴kwarg时,我得到与第一种方法相同的错误。那么,如何将每行中的值传递给函数以根据这些行中的数据获取值?
答案 0 :(得分:2)
我认为您需要apply
与axis=1
进行逐行处理,因此请输入float
s:
df['LowerCI'] = df[['Value', 'Count', 'Denominator']]
.replace('*', -1)
.astype(float)
.apply(lambda x: public_health_cis.wilson_lower(x['Value'],
x['Count'],
x['Denominator'],
indicator.rate),
axis=1)
示例(为了简化我将indicator.rate
更改为标量100
):
df = pd.DataFrame({'Value':['*',2,3],
'Count':[4,5,6],
'Denominator':[7,8,'*'],
'D':[1,3,5],
'E':[5,3,6],
'F':[7,4,3]})
print (df)
Count D Denominator E F Value
0 4 1 7 5 7 *
1 5 3 8 3 4 2
2 6 5 * 6 3 3
df['LowerCI'] = df[['Value', 'Count', 'Denominator']] \
.replace('*', -1) \
.astype(float) \
.apply(lambda x: public_health_cis.wilson_lower(x['Value'],
x['Count'],
x['Denominator'],
100), axis=1)
print (df)
Count D Denominator E F Value LowerCI
0 4 1 7 5 7 * 14.185885
1 5 3 8 3 4 2 18.376210
2 6 5 * 6 3 3 99.144602