我有一个pandas数据框sample
,其中一个名为PR
的列应用了lambda函数,如下所示:
sample['PR'] = sample['PR'].apply(lambda x: NaN if x < 90)
然后我收到以下语法错误消息:
sample['PR'] = sample['PR'].apply(lambda x: NaN if x < 90)
^
SyntaxError: invalid syntax
我做错了什么?
答案 0 :(得分:21)
您需要mask
:
sample['PR'] = sample['PR'].mask(sample['PR'] < 90, np.nan)
loc
和boolean indexing
的另一种解决方案:
sample.loc[sample['PR'] < 90, 'PR'] = np.nan
样品:
import pandas as pd
import numpy as np
sample = pd.DataFrame({'PR':[10,100,40] })
print (sample)
PR
0 10
1 100
2 40
sample['PR'] = sample['PR'].mask(sample['PR'] < 90, np.nan)
print (sample)
PR
0 NaN
1 100.0
2 NaN
sample.loc[sample['PR'] < 90, 'PR'] = np.nan
print (sample)
PR
0 NaN
1 100.0
2 NaN
编辑:
apply
的解决方案:
sample['PR'] = sample['PR'].apply(lambda x: np.nan if x < 90 else x)
计时 len(df)=300k
:
sample = pd.concat([sample]*100000).reset_index(drop=True)
In [853]: %timeit sample['PR'].apply(lambda x: np.nan if x < 90 else x)
10 loops, best of 3: 102 ms per loop
In [854]: %timeit sample['PR'].mask(sample['PR'] < 90, np.nan)
The slowest run took 4.28 times longer than the fastest. This could mean that an intermediate result is being cached.
100 loops, best of 3: 3.71 ms per loop
答案 1 :(得分:3)
您需要在lambda函数中添加else,因为您要告诉您在满足条件(此处x <90)的情况下该怎么做,但您没有告诉在不满足条件的情况下该怎么做。 / p>
sample['PR'] = sample['PR'].apply(lambda x: 'NaN' if x < 90 else x)