当我在不同的GPU(特斯拉K-20,安装了cuda 7.5,6GB内存)中运行我的代码时,我收到以下错误(请参阅堆栈跟踪)。如果我使用GeForce 1080或Titan X GPU,代码工作正常。
堆栈跟踪:
File "code/source/main.py", line 68, in <module>
train.train_epochs(train_batches, dev_batches, args.epochs)
File "/gpfs/home/g/e/geniiexe/BigRed2/code/source/train.py", line 34, in train_epochs
losses = self.train(train_batches, dev_batches, (epoch + 1))
File "/gpfs/home/g/e/geniiexe/BigRed2/code/source/train.py", line 76, in train
self.optimizer.step()
File "/gpfs/home/g/e/geniiexe/BigRed2/anaconda3/lib/python3.5/site-packages/torch/optim/adam.py", line 70, in step
bias_correction1 = 1 - beta1 ** state['step']
OverflowError: (34, 'Numerical result out of range')
那么,在GeForce或Titan X GPU上运行良好的情况下,在不同的GPU(Tesla K-20)中出现此类错误的原因是什么?而且这个错误意味着什么?它与内存溢出有关,我不这么认为。
答案 0 :(得分:0)
discuss.pytorch.org
中建议的一种解决方法如下:
替换adam.py
中的以下行: -
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
BY
bias_correction1 = 1 - beta1 ** min(state['step'], 1022)
bias_correction2 = 1 - beta2 ** min(state['step'], 1022)
答案 1 :(得分:0)
如果有人像我一样来到这里,寻找相同的错误,但是使用scikit-learn的MLPClassifier的CPU,上述修复恰好是修复sklearn代码的足够好提示。
解决方法是: 在文件中... / site-packages / sklearn / neural_network / _stochastic_optimizers.py
更改此内容:
self.learning_rate = (self.learning_rate_init *
np.sqrt(1 - self.beta_2 ** self.t) /
(1 - self.beta_1 ** self.t))
对此:
orig_self_t = self.t
new_self_t = min(orig_self_t, 1022)
self.learning_rate = (self.learning_rate_init *
np.sqrt(1 - self.beta_2 ** new_self_t) /
(1 - self.beta_1 ** new_self_t))