我有一个任务说"使用轨迹栏的三种颜色阈值。将blob绘制为相应的颜色。"
我创建了轨道栏并且它们工作正常,但我该如何完成此任务?不幸的是,他们没有在课堂上给我们足够的信息来解决它。
非常感谢您的合作。
import numpy as np
import cv2
# open the camera
cap = cv2.VideoCapture(0)
def nothing(x):
pass
cv2.namedWindow('result')
# Starting with 100's to prevent error while masking
h,s,v = 100,100,100
# Creating track bar
cv2.createTrackbar('h', 'result',0,179,nothing)
cv2.createTrackbar('s', 'result',0,255,nothing)
cv2.createTrackbar('v', 'result',0,255,nothing)
while True:
#read the image from the camera
ret, frame = cap.read()
#You will need this later
frame = cv2.cvtColor(frame, 35)
#converting to HSV
hsv = cv2.cvtColor(frame,cv2.COLOR_BGR2HSV)
# get info from track bar and appy to result
h = cv2.getTrackbarPos('h','result')
s = cv2.getTrackbarPos('s','result')
v = cv2.getTrackbarPos('v','result')
# Normal masking algorithm
lower_blue = np.array([h,s,v])
upper_blue = np.array([180,255,255])
mask = cv2.inRange(hsv,lower_blue, upper_blue)
result = cv2.bitwise_and(frame,frame,mask = mask)
cv2.imshow('result',result)
#find center
cnts=cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)[-2]
center=None
if len(cnts)>0:
c=max(cnts, key=cv2.contourArea)
((x,y),radius)=cv2.minEnclosingCircle(c)
M=cv2.moments(c)
center=(int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
if radius>10:
#cv2.circle(frame, (int(x),int(y)), int(radius), 2)
cv2.circle(frame, center,5,(0,0,255),-1)
# color detection limits
lB = 5
lG = 50
lR = 50
hB = 15
hG = 255
hR = 255
lowerLimits = np.array([lB, lG, lR])
upperLimits = np.array([hB, hG, hR])
# Our operations on the frame come here
thresholded = cv2.inRange(frame, lowerLimits, upperLimits)
outimage = cv2.bitwise_and(frame, frame, mask = thresholded)
cv2.imshow('original', frame)
# Display the resulting frame
cv2.imshow('processed',outimage)
# Quit the program when Q is pressed
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# When everything done, release the capture
print 'closing program'
cap.release()
cv2.destroyAllWindows()
答案 0 :(得分:0)
如果您正在尝试按照我的想法行事,您可以使用以下方式轻松完成此操作:
N = 256 / a
image / = N
image * = N
在哪里' a'是你想在新图像中看到的颜色数量,我认为你需要导入numpy才能实现。我认为这可以起作用,因为图像矩阵中的颜色数字被舍入到一个' a'盒子,在你的情况下为3,然后当你用相同的数字计时时缩小到真正的颜色。
对你来说可能为时已晚,但希望这有助于某人。
编辑:使用灰度时只会提供3种颜色,它会在彩色图像上有所不同