plm包如何处理固定效果 - 每个人一个假人或少一个假人?

时间:2017-05-26 09:05:57

标签: fixed effects lm plm

我目前正在尝试习惯plm包并尝试使用plm()函数然后使用lm(使用plm()函数来制作具有单独效果的固定效果(仅为了做到这一点,请忽略错误指定)) )功能。我发现当我在lm()回归中为每个单独的N包含一个虚拟变量时,我只能复制plm()回归的结果。据我所知,回归中应该只包含N-1个虚拟变量。有谁知道plm如何处理各个固定效果?时间固定效应btw也是如此。

这是我的代码使用Grunwald 1958的示例数据(也包含在plm包中),请原谅相当笨拙的虚拟变量创建:

################################################################################
## Fixed Effects Estimation with plm() and lm() with individual effects
################################################################################
# Prepare R sheet
library(plm)
library(dplyr)

################################################################################
# Get data
data<-read.csv("http://people.stern.nyu.edu/wgreene/Econometrics/grunfeld.csv")
class(data)
data.tbl<-as.tbl(data)
#I = Investment
#F = Real Value of the Firm
#C = Real Value of the Firm's Capital Stock
################################################################################
# create firm (individual) dummies
firmdum<-rbind(matrix(rep(c(1,0,0,0,0,0,0,0,0,0),20),ncol = 10,byrow = T),
           matrix(rep(c(0,1,0,0,0,0,0,0,0,0),20),ncol = 10,byrow = T),
           matrix(rep(c(0,0,1,0,0,0,0,0,0,0),20),ncol = 10,byrow = T),
           matrix(rep(c(0,0,0,1,0,0,0,0,0,0),20),ncol = 10,byrow = T),
           matrix(rep(c(0,0,0,0,1,0,0,0,0,0),20),ncol = 10,byrow = T),
           matrix(rep(c(0,0,0,0,0,1,0,0,0,0),20),ncol = 10,byrow = T),
           matrix(rep(c(0,0,0,0,0,0,1,0,0,0),20),ncol = 10,byrow = T),
           matrix(rep(c(0,0,0,0,0,0,0,1,0,0),20),ncol = 10,byrow = T),
           matrix(rep(c(0,0,0,0,0,0,0,0,1,0),20),ncol = 10,byrow = T),
           matrix(rep(c(0,0,0,0,0,0,0,0,0,1),20),ncol = 10,byrow = T)
)
colnames(firmdum)<-paste("firm",c(1:10),sep = "")
firmdum.tbl<-tbl_df(firmdum)
firmdum.tbl<-sapply(firmdum.tbl, as.integer)

###############################################################################################
# Estimation with individual fixed effects (plm)
dataset<-tbl_df(cbind(data.tbl,firmdum.tbl))
est1<- plm(I ~ F + C, data = dataset, model = "within", effect = "individual")
summary(est1)
plot(residuals(est1))

# Replication with lm
individualeffects<-tbl_df(cbind(data.tbl,firmdum.tbl))
est2<-lm(I ~ . -1 -FIRM -YEAR, individualeffects)
summary(est2)
plot(residuals(est2))

# Now exclude 1 dummy (as should be done in fixed effects)
individualeffects<-tbl_df(cbind(data.tbl,firmdum.tbl))
est3<-lm(I ~ . -1 -FIRM -YEAR -firm1, individualeffects)
summary(est3)
plot(residuals(est3))

差异很小,但知道plm函数如何处理固定效果会很有趣。当我在模型上运行测试时遇到了一个问题,当我用lm()包进行固定效果估计时不会出现问题,不包括一年和一个假人。 我很感激任何帮助或建议!

1 个答案:

答案 0 :(得分:1)

对于您的第3次估算(est3),排除一个假人并排除拦截将给您不同的结果。当模型中存在截距时变量变为线性相关(如果将所有虚拟列相加,则得到所有1列的列,即截距)。如果没有拦截,你想要你模型中的所有假人:

est4 <- lm(I ~ . -1 -FIRM -YEAR, individualeffects)
summary(est4)

此(est4)给出与plm()方法相同的估算值。

顺便说一句:使用因子:

更容易为你创造假人
est5 <- lm(I ~ F + C + factor(FIRM), data = individualeffects)
summary(est5)

[...]

Coefficients:
                 Estimate Std. Error t value Pr(>|t|)    
(Intercept)     -70.29672   49.70796  -1.414    0.159    
F                 0.11012    0.01186   9.288  < 2e-16 ***
C                 0.31007    0.01735  17.867  < 2e-16 ***
factor(FIRM)2   172.20253   31.16126   5.526 1.08e-07 ***
factor(FIRM)3  -165.27512   31.77556  -5.201 5.14e-07 ***
factor(FIRM)4    42.48742   43.90988   0.968    0.334    
factor(FIRM)5   -44.32010   50.49226  -0.878    0.381    
factor(FIRM)6    47.13542   46.81068   1.007    0.315    
factor(FIRM)7     3.74324   50.56493   0.074    0.941    
factor(FIRM)8    12.75106   44.05263   0.289    0.773    
factor(FIRM)9   -16.92555   48.45327  -0.349    0.727    
factor(FIRM)10   63.72887   50.33023   1.266    0.207    
[...]

注意:没有factor(FIRM)1

你要求复制的内容太多了。您还询问了如何在plm包中处理这个问题:不是通过引入虚拟变量,而是通过每个人的数据的意义,因为这是等价的(理论上是Frisch-Waugh-Lovell定理)。 / p>