Tensorflow批量标准化如何工作?

时间:2017-05-21 06:05:56

标签: tensorflow batch-normalization

我在深度神经网络中成功使用张量流批量归一化。我是按照以下方式做的:

if apply_bn:
    with tf.variable_scope('bn'):
        beta = tf.Variable(tf.constant(0.0, shape=[out_size]), name='beta', trainable=True)
        gamma = tf.Variable(tf.constant(1.0, shape=[out_size]), name='gamma', trainable=True)
        batch_mean, batch_var = tf.nn.moments(z, [0], name='moments')
        ema = tf.train.ExponentialMovingAverage(decay=0.5)

        def mean_var_with_update():
            ema_apply_op = ema.apply([batch_mean, batch_var])
            with tf.control_dependencies([ema_apply_op]):
                return tf.identity(batch_mean), tf.identity(batch_var)

        mean, var = tf.cond(self.phase_train,
                            mean_var_with_update,
                            lambda: (ema.average(batch_mean), ema.average(batch_var)))

        self.z_prebn.append(z)
        z = tf.nn.batch_normalization(z, mean, var, beta, gamma, 1e-3)
        self.z.append(z)

        self.bn.append((mean, var, beta, gamma))

它适用于培训和测试阶段。 但是当我尝试在我的另一个项目中使用计算的神经网络参数时遇到问题,我需要自己计算所有矩阵乘法和东西。问题是我无法重现tf.nn.batch_normalization函数的行为:

feed_dict = {
    self.tf_x: np.array([range(self.x_cnt)]) / 100, 
    self.keep_prob: 1,
    self.phase_train: False
}

for i in range(len(self.z)):
    # print 0 layer's 1 value of arrays
    print(self.sess.run([
        self.z_prebn[i][0][1], # before bn
        self.bn[i][0][1],      # mean
        self.bn[i][1][1],      # var
        self.bn[i][2][1],      # offset
        self.bn[i][3][1],      # scale
        self.z[i][0][1],       # after bn
    ], feed_dict=feed_dict))
    # prints
    # [-0.077417567, -0.089603029, 0.000436493, -0.016652612, 1.0055743, 0.30664611]

根据页面https://www.tensorflow.org/versions/r1.2/api_docs/python/tf/nn/batch_normalization上的公式:

bn = scale * (x - mean) / (sqrt(var) + 1e-3) + offset

但正如我们所见,

1.0055743 * (-0.077417567 - -0.089603029)/(0.000436493^0.5 + 1e-3) + -0.016652612
= 0.543057

与Tensorflow本身计算的值0.30664611不同。 那么我在这里做错了什么以及为什么我不能自己计算批量标准化值?

提前致谢!

1 个答案:

答案 0 :(得分:2)

使用的公式与以下略有不同:

bn = scale * (x - mean) / (sqrt(var) + 1e-3) + offset

should be

bn = scale * (x - mean) / (sqrt(var + 1e-3)) + offset

variance_epsilon变量应该与variance一致,而不是sigma,这是方差的平方根。

更正后,公式产生正确的值:

1.0055743 * (-0.077417567 - -0.089603029)/((0.000436493 + 1e-3)**0.5)  + -0.016652612
# 0.30664642276945747