我对张量流中的tf.layers.batch_normalization
感到困惑。
我的代码如下:
def my_net(x, num_classes, phase_train, scope):
x = tf.layers.conv2d(...)
x = tf.layers.batch_normalization(x, training=phase_train)
x = tf.nn.relu(x)
x = tf.layers.max_pooling2d(...)
# some other staffs
...
# return
return x
def train():
phase_train = tf.placeholder(tf.bool, name='phase_train')
image_node = tf.placeholder(tf.float32, shape=[batch_size, HEIGHT, WIDTH, 3])
images, labels = data_loader(train_set)
val_images, val_labels = data_loader(validation_set)
prediction_op = my_net(image_node, num_classes=2,phase_train=phase_train, scope='Branch1')
loss_op = loss(...)
# some other staffs
optimizer = tf.train.AdamOptimizer(base_learning_rate)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(loss=total_loss, global_step=global_step)
sess = ...
coord = ...
while not coord.should_stop():
image_batch, label_batch = sess.run([images, labels])
_,loss_value= sess.run([train_op,loss_op], feed_dict={image_node:image_batch,label_node:label_batch,phase_train:True})
step = step+1
if step==NUM_TRAIN_SAMPLES:
for _ in range(NUM_VAL_SAMPLES/batch_size):
image_batch, label_batch = sess.run([val_images, val_labels])
prediction_batch = sess.run([prediction_op], feed_dict={image_node:image_batch,label_node:label_batch,phase_train:False})
val_accuracy = compute_accuracy(...)
def test():
phase_train = tf.placeholder(tf.bool, name='phase_train')
image_node = tf.placeholder(tf.float32, shape=[batch_size, HEIGHT, WIDTH, 3])
test_images, test_labels = data_loader(test_set)
prediction_op = my_net(image_node, num_classes=2,phase_train=phase_train, scope='Branch1')
# some staff to load the trained weights to the graph
saver.restore(...)
for _ in range(NUM_TEST_SAMPLES/batch_size):
image_batch, label_batch = sess.run([test_images, test_labels])
prediction_batch = sess.run([prediction_op], feed_dict={image_node:image_batch,label_node:label_batch,phase_train:False})
test_accuracy = compute_accuracy(...)
培训似乎运作良好且val_accuracy
合理(比如0.70
)。问题是:当我尝试使用训练模型进行测试时(即test
函数),如果phase_train
设置为False
,则test_accuracy
为非常低(例如0.000270
),但当phase_train
设置为True
时,test_accuracy
似乎正确(例如0.69
)。
据我了解,phase_train
在测试阶段应该是False
,对吧?
我不确定问题是什么。我是否误解了批量规范化?
答案 0 :(得分:0)
这可能是您代码中的某些错误,或者只是过拟合。如果您评估火车数据,那么准确性是否达到训练期间? 如果问题出在批处理规范上,那么没有训练的训练误差会更高,而在训练模式下会更高。 如果问题是过拟合的,则批处理规范可能不是导致该问题的根本原因,而在其他地方。