我一直在尝试使用DataFrameMapper
将我的数据框上的多个预处理转换添加到我的scikit-learn Pipeline中。
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/abalone/abalone.data"
names = ['Sex', 'Length', 'Diameter', 'Height', 'Whole weight', 'Schuked weight', 'Viscera weight', 'Shell weight', 'Rings']
df = pd.read_csv(url, names=names)
mapper = DataFrameMapper(
[('Height', Normalizer()), ('Sex', LabelBinarizer())]
)
stages = []
stages += [("mapper", mapper)]
estimator = DecisionTreeClassifier()
stages += [("dtree", estimator)]
pipeline = Pipeline(stages)
labelCol = 'Rings'
target = df[labelCol]
data = df.drop(labelCol, axis=1)
train_data, test_data, train_target, expected = train_test_split(data, target, test_size=0.25, random_state=33)
model = pipeline.fit(train_data, train_target)
但是,我收到以下错误:
Traceback (most recent call last):
File "app/experimenter/sklearn/transformations.py", line 65, in <module>
model = pipeline.fit(train_data, train_target)
File "/Library/Python/2.7/site-packages/sklearn/pipeline.py", line 268, in fit
Xt, fit_params = self._fit(X, y, **fit_params)
File "/Library/Python/2.7/site-packages/sklearn/pipeline.py", line 234, in _fit
Xt = transform.fit_transform(Xt, y, **fit_params_steps[name])
File "/Library/Python/2.7/site-packages/sklearn/base.py", line 497, in fit_transform
return self.fit(X, y, **fit_params).transform(X)
File "/Library/Python/2.7/site-packages/sklearn_pandas/dataframe_mapper.py", line 225, in transform
stacked = np.hstack(extracted)
File "/Library/Python/2.7/site-packages/numpy/core/shape_base.py", line 288, in hstack
return _nx.concatenate(arrs, 1)
ValueError: all the input array dimensions except for the concatenation axis must match exactly
我错过了什么?
谢谢:)
答案 0 :(得分:2)
您必须改变DataFrameMapper
:
mapper = DataFrameMapper(
[(['Height'], Normalizer()), ('Sex', LabelBinarizer())]
)
这是一个细微的细节,可以在sklearn_pandas的文档中找到:
将列映射到转换
将列选择器指定为
'column'
(作为简单字符串)和['column']
(作为具有一个元素的列表)之间的区别在于传递给转换器的数组的形状。在第一种情况下,将传递一维数组,而在第二种情况下,它将是具有一列的二维数组,即列向量。[...]
请注意,某些变换器需要一维输入(面向标签的输入),而其他一些变换器(如
OneHotEncoder
或Imputer
)需要二维输入,形状为{{1 }}