我的数据如下:
x
如何过滤y
值(符合x_range内部值)和z
值以返回适当的x
值?例如,如果y
= 248且Fish
= 5,我想返回#!/usr/bin/env python
import socket
TCP_IP = '127.0.0.1'
TCP_PORT = 5005
BUFFER_SIZE = 20 # Normally 1024, but we want fast response
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind((TCP_IP, TCP_PORT))
s.listen(1)
conn, addr = s.accept()
print 'Connection address:', addr
while 1:
data = conn.recv(BUFFER_SIZE)
if not data: break
print "received data:", data
conn.send(data) # echo
conn.close()
...
答案 0 :(得分:1)
简单过滤练习:
保存您的数据框:
df['x_range_start'] = [int(i.split('-')[0]) for i in df.x_range]
为范围开始和结束添加两列:
df['x_range_start'] = [int(i.split('-')[0]) for i in df.x_range]
df['x_range_end'] = [int(i.split('-')[1]) for i in df.x_range]
过滤以查找值:
x_value = 113
y_value = 5
df[(df.x_range_start <= x_value) &(x_value <= df.x_range_end)][df.y == y_value]['z']
答案 1 :(得分:0)
我不喜欢这个,但我一起解决了一个问题:
分裂:
df['low'], df['high'] = df['x_range'].str.split('-', 1).str
df['low'] = pd.to_numeric(df['low'])
df['high'] = pd.to_numeric(df['high'])
过滤器:
x = 248
y = 6
row = df[(pd.Series.between(x, left=df.low, right=df.high, inclusive=True)) &
(df.y == y)]
row['z']