我正在尝试使用method = "glm"
中的train
来构建分类模型。
当我使用method = "rpart"
时,它工作正常,但当我切换到method = "glm"
时,它会给我一个错误说
调整参数网格应具有列参数
我尝试使用
cpGrid = data.frame(.0001)
也
cpGrid = data.frame(expand.grid(.cp = seq(.0001, .09, .001)))
但两者都抛出错误。
以下是我的初始代码
numFolds = trainControl(method = "cv", number = 10, repeats = 3)
cpGrid = expand.grid(.cp = seq(.0001, .09, .001))
temp <-train(Churn. ~., data = train, method = 'rpart', trControl = numFolds, tuneGrid = cpGrid)
treeCV <-train(Churn. ~., data = train, method = 'glm', trControl = numFolds, tuneGrid = data.frame(cpGrid))
predictCV = predict(treeCV, newdata = test, type = "prob")
我的数据中 dput
:
train <- structure(list(State = structure(c(17L, 32L, 36L, 37L, 20L, 25L
), .Label = c("AK", "AL", "AR", "AZ", "CA", "CO", "CT", "DC",
"DE", "FL", "GA", "HI", "IA", "ID", "IL", "IN", "KS", "KY", "LA",
"MA", "MD", "ME", "MI", "MN", "MO", "MS", "MT", "NC", "ND", "NE",
"NH", "NJ", "NM", "NV", "NY", "OH", "OK", "OR", "PA", "RI", "SC",
"SD", "TN", "TX", "UT", "VA", "VT", "WA", "WI", "WV", "WY"), class = "factor"),
VMail.Message = c(25L, 0L, 0L, 0L, 24L, 0L), Day.Mins = c(265.1,
243.4, 299.4, 166.7, 218.2, 157), Day.Calls = c(110L, 114L,
71L, 113L, 88L, 79L), Eve.Charge = c(16.78, 10.3, 5.26, 12.61,
29.62, 8.76), Night.Mins = c(244.7, 162.6, 196.9, 186.9,
212.6, 211.8), Night.Calls = c(91L, 104L, 89L, 121L, 118L,
96L), Intl.Mins = c(10, 12.2, 6.6, 10.1, 7.5, 7.1), CustServ.Calls = c(1L,
0L, 2L, 3L, 3L, 0L), Churn. = structure(c(1L, 1L, 1L, 1L,
1L, 1L), .Label = c("False.", "True."), class = "factor"),
Area.Code = c(2, 2, 1, 2, 3, 2), Int.l.Plan = c(1, 1, 2,
2, 1, 2), VMail.Plan = c(2, 1, 1, 1, 2, 1), Day.Charge = c(565,
1005, 1571, 665, 1113, 580), Eve.Mins = c(690, 87, 1535,
256, 1517, 9), Eve.Calls = c(120, 12, 109, 25, 10, 115),
Night.Charge = c(101, 644, 797, 753, 866, 862), Intl.Calls = c(15,
17, 19, 15, 19, 15), Intl.Charge = c(78, 100, 44, 79, 53,
49)), .Names = c("State", "VMail.Message", "Day.Mins", "Day.Calls",
"Eve.Charge", "Night.Mins", "Night.Calls", "Intl.Mins", "CustServ.Calls",
"Churn.", "Area.Code", "Int.l.Plan", "VMail.Plan", "Day.Charge",
"Eve.Mins", "Eve.Calls", "Night.Charge", "Intl.Calls", "Intl.Charge"
), row.names = c(1L, 3L, 4L, 5L, 7L, 8L), class = "data.frame")
需要您的帮助才能在cpGrid
中使用method = "glm"
。还想了解我应该如何在其中加入ntree
。我通过这里和那里提供的一些解决方案进行了探索,但似乎没有任何工作。
答案 0 :(得分:2)
modelLookup
中的caret
命令提供与模型的调整参数相关的信息
对于rpart
,只有一个调整参数可用,cp
复杂度参数。
modelLookup("rpart")
#################
model parameter label forReg forClass probModel
1 rpart cp Complexity Parameter TRUE TRUE TRUE
glm
的调整参数为parameter
(我不知道它的用途):
modelLookup("glm")
#################
model parameter label forReg forClass probModel
1 glm parameter parameter TRUE TRUE TRUE
因此,tuneGrid
的{{1}}需要一个名为glm
的列:
.parameter