我的问题与this one有些相似,但并不完全相同。我有一个具有以下结构的CSV
| id | entrydate | sales | purchases |
| -- | -----------| ----- | --------- |
| 1 | 05/03/2017 | 10 | 1 |
| 2 | 05/03/2017 | 20 | 2 |
| 3 | 05/03/2017 | 30 | 3 |
| 1 | 05/03/2017 | 40 | 1 |
我将此读入数据框,我想获得每日销售和购买的汇总(个人ID并不重要,只是每日汇总)。
但是,首先,我需要删除重复项。这让我很沮丧,因为如果您采用上面的示例,对于 id 1 ,同一天有两个条目,但purchases
列中的多个条目将被视为重复条目,sales
列中的多个条目有效,因此正确的分组将导致
| id | entrydate | sales | purchases |
| -- | -----------| ----- | --------- |
| 1 | 05/03/2017 | 50 | 1 |
| 2 | 05/03/2017 | 20 | 2 |
| 3 | 05/03/2017 | 30 | 3 |
然后获得每日汇总会给我
|entrydate | sales | purchases |
| -----------| ----- | --------- |
| 05/03/2017 | 100 | 6 |
我试图使用
删除purchases
重复项
df = pandas.read_csv('../my-csv.csv', parse_dates=True, dayfirst=True, usecols=my_columns, dtype=my_dtypes).rename(columns=str.lower).assign(date=lambda x: pd.to_datetime(x['entrydate'], format="%d/%m/%Y")).set_index('date')
df = df.drop_duplicates(['id', 'entrydate', 'purchases'])
df.drop(['id'], axis=1, inplace=True)
df = df.groupby(pd.TimeGrouper(freq='D')).sum()
虽然这会删除重复的purchases
,但它也会删除有效的sales
A-Za-z解决方案的图像
答案 0 :(得分:1)
如果您通过entrydate分组,则可以汇总销售和购买:
In [11]: df.groupby("entrydate").agg({"sales": "sum", "purchases": "sum"})
Out[11]:
sales purchases
entrydate
05/03/2017 100 7
答案 1 :(得分:1)
您可以使用groupby两次,首先是聚合销售
df.sales = df.groupby('id').sales.transform('sum')
df = df.drop_duplicates()
df.groupby(df.entrydate).sum().reset_index()
entrydate sales purchases
0 2017-05-03 100 6
编辑:考虑不同日期的总和
df.sales = df.groupby(['id', 'date']).sales.transform('sum')
df = df.drop_duplicates()
df.groupby('date')['sales', 'purchases'].sum().reset_index()
你得到了
date sales purchases
0 2017-03-05 100 6
1 2017-03-06 40 1
答案 2 :(得分:0)
<强>设置强>
df = pd.DataFrame({'entrydate': {0: '05/03/2017',
1: '05/03/2017',
2: '05/03/2017',
3: '05/03/2017',
4: '06/03/2017',
5: '06/03/2017',
6: '06/03/2017',
7: '06/03/2017'},
'id': {0: 1, 1: 2, 2: 3, 3: 1, 4: 1, 5: 2, 6: 3, 7: 1},
'purchases': {0: 1, 1: 2, 2: 3, 3: 1, 4: 1, 5: 2, 6: 3, 7: 1},
'sales': {0: 10, 1: 20, 2: 30, 3: 40, 4: 10, 5: 20, 6: 30, 7: 40}})
<强>解决方案强>
#First group by entrydate and id, summing sales and take the max from purchases(removing duplicates). Then another group by to sum sales and purchases.
df.groupby(['entrydate','id']).agg({'sales':sum, 'purchases':max}).groupby(level=0).sum().reset_index()
Out[431]:
entrydate purchases sales
0 05/03/2017 6 100
1 06/03/2017 6 100