添加新列并删除重复项,以便逐列替换空值

时间:2016-08-17 12:46:37

标签: python pandas

Duplication type:
Check this column only (default)
Check other columns only
Check all columns

Use Last Value:
True - retain the last duplicate value
False - retain the first of the duplicates (default)

此规则应向数据框添加一个新列,其中包含与任何唯一列的源列相同的列,并且对于任何重复列都为null。

基本代码是df.loc [df.duplicated(),get_unique_column_name(df," clean")] = df [get_column_name(df,column)],其中参数为duplicated()基于复制类型

请参阅上面此功能的参考:http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.duplicated.html

您应该根据duplication_type

的设置在subset参数中指定列

您应该根据<_ p>上面的use_last_value指定use_last_value

这是我的档案。

Jason   Miller  42  4   25
Tina    Ali     36  31  57
Jake    Milner  24  2   62
Jason   Miller  42  4   25
Jake    Milner  24  2   62
Amy     Cooze   73  3   70
Jason   Miller  42  4   25
Jason   Miller  42  4   25
Jake    Milner  24  2   62
Jake    Miller  42  4   25

我希望通过在pandas.in下面的文件中使用,我选择了2列。

Jason   Miller  42  4   25
Jake    Ali     36  31  57
Jake    Milner  24  2   62
Jason   Miller      4   25
Jake    Milner      2   62
Jake    Cooze   73  3   70
Jason   Miller      4   25
Jason   Miller      4   25
Jake    Milner      2   62
Jake    Miller      4   25

请有人回复我的问题。

1 个答案:

答案 0 :(得分:1)

您可以使用DF.duplicated并指定列C的值,其中第一个出现的值出现在A列和B列。

然后,您可以使用空字符串填充生成的Nans以生成所需的数据帧。

df = pd.read_csv(data, delim_whitespace=True, header=None, names=['A','B','C','D','E'])
df.loc[~df.duplicated(), "C'"] = df['C']
df.fillna('', inplace=True)
df = df[["A","B", "C'","D","E"]]
print(df)

       A       B  C'   D   E
0  Jason  Miller  42   4  25
1   Tina     Ali  36  31  57
2   Jake  Milner  24   2  62
3  Jason  Miller       4  25
4   Jake  Milner       2  62
5    Amy   Cooze  73   3  70
6  Jason  Miller       4  25
7  Jason  Miller       4  25
8   Jake  Milner       2  62
9   Jake  Miller  42   4  25

另一种方法是获取重复列的子集,并用空字符串替换相关列。然后,您可以使用update使用原始df修改数据框。

In [2]: duplicated_cols = df[df.duplicated(subset=['C', 'D', 'E'])]

In [3]: duplicated_cols
Out[3]: 
       A       B   C  D   E
3  Jason  Miller  42  4  25
4   Jake  Milner  24  2  62
6  Jason  Miller  42  4  25
7  Jason  Miller  42  4  25
8   Jake  Milner  24  2  62
9   Jake  Miller  42  4  25

In [4]: duplicated_cols.loc[:,'C'] = ''

In [5]: df.update(duplicated_cols)

In [6]: df
Out[6]: 
       A       B   C     D     E
0  Jason  Miller  42   4.0  25.0
1   Tina     Ali  36  31.0  57.0
2   Jake  Milner  24   2.0  62.0
3  Jason  Miller       4.0  25.0
4   Jake  Milner       2.0  62.0
5    Amy   Cooze  73   3.0  70.0
6  Jason  Miller       4.0  25.0
7  Jason  Miller       4.0  25.0
8   Jake  Milner       2.0  62.0
9   Jake  Miller       4.0  25.0