尝试在熊猫中删除列时出现keyError。

时间:2018-07-08 13:35:57

标签: python pandas numpy

我想从数据中删除一些行。我正在使用以下代码-

    import pandas as pd
    import numpy as np

    vle = pd.read_csv('/home/user/Documents/MOOC dataset original/vle.csv')


    df = pd.DataFrame(vle)
    df.dropna(subset = ['week_from'],axis=1,inplace = True)
    df.dropna(subset = ['week_to'],axis=1,inplace = True)
    df.to_csv('/home/user/Documents/MOOC dataset cleaned/studentRegistration.csv')

但它引发以下错误-

      raise KeyError(list(np.compress(check,subset)))
      KeyError: [' week_from ']      

出了什么问题?

1 个答案:

答案 0 :(得分:1)

我认为需要省略axis=1,因为默认值是axis=0,用于删除带有dropna的NaN(缺失值)的行,该行是用于检查NaN的列的子集,解决方案也应该简化为一行:

df.dropna(subset = ['week_from', 'week_to'], inplace = True)

示例

df = pd.DataFrame({'A':list('abcdef'),
                   'week_from':[np.nan,5,4,5,5,4],
                   'week_to':[1,3,np.nan,7,1,0],
                   'E':[5,3,6,9,2,np.nan],
                   'F':list('aaabbb')})

print (df)
   A  week_from  week_to    E  F
0  a        NaN      1.0  5.0  a
1  b        5.0      3.0  3.0  a
2  c        4.0      NaN  6.0  a
3  d        5.0      7.0  9.0  b
4  e        5.0      1.0  2.0  b
5  f        4.0      0.0  NaN  b

df.dropna(subset = ['week_from', 'week_to'], inplace = True)
print (df)
   A  week_from  week_to    E  F
1  b        5.0      3.0  3.0  a
3  d        5.0      7.0  9.0  b
4  e        5.0      1.0  2.0  b
5  f        4.0      0.0  NaN  b

如果要通过为支票NaN指定行来删除列:

df.dropna(subset = [2, 5], axis=1, inplace = True)
print (df)
   A  week_from  F
0  a        NaN  a
1  b        5.0  a
2  c        4.0  a
3  d        5.0  b
4  e        5.0  b
5  f        4.0  b

但是如果需要通过名称删除列的解决方案不同,则需要drop

df.drop(['A','week_from'],axis=1, inplace = True)
print (df)
   week_to    E  F
0      1.0  5.0  a
1      3.0  3.0  a
2      NaN  6.0  a
3      7.0  9.0  b
4      1.0  2.0  b
5      0.0  NaN  b