我有两个系列。一个由 k 维度中的 m 1 点组成,另一个 m 2 k 尺寸中的点。我需要计算两个集合中每对之间的成对距离。
基本上有两个矩阵 A m 1 ,k 和 B m 2 ,k 我需要得到一个矩阵 C m 1 ,m 2
我可以通过使用distance.sdist轻松地在scipy中执行此操作并选择多个距离指标中的一个,我也可以在循环中在TF中执行此操作,但我无法弄清楚如何执行此操作甚至对于Eucledian距离进行矩阵操作。
答案 0 :(得分:3)
几个小时后,我终于在Tensorflow中找到了如何做到这一点。我的解决方案仅适用于Eucledian距离并且非常冗长。我也没有数学证明(只是很多手工操作,我希望它更加严谨):
import tensorflow as tf
import numpy as np
from scipy.spatial.distance import cdist
M1, M2, K = 3, 4, 2
# Scipy calculation
a = np.random.rand(M1, K).astype(np.float32)
b = np.random.rand(M2, K).astype(np.float32)
print cdist(a, b, 'euclidean'), '\n'
# TF calculation
A = tf.Variable(a)
B = tf.Variable(b)
p1 = tf.matmul(
tf.expand_dims(tf.reduce_sum(tf.square(A), 1), 1),
tf.ones(shape=(1, M2))
)
p2 = tf.transpose(tf.matmul(
tf.reshape(tf.reduce_sum(tf.square(B), 1), shape=[-1, 1]),
tf.ones(shape=(M1, 1)),
transpose_b=True
))
res = tf.sqrt(tf.add(p1, p2) - 2 * tf.matmul(A, B, transpose_b=True))
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print sess.run(res)
答案 1 :(得分:0)
这将对任意维的张量(即包含(...,N,d)向量)进行处理。请注意,它不在集合之间(即不像scipy.spatial.distance.cdist
),而是在单个向量(例如scipy.spatial.distance.pdist
)内
import tensorflow as tf
import string
def pdist(arr):
"""Pairwise Euclidean distances between vectors contained at the back of tensors.
Uses expansion: (x - y)^T (x - y) = x^Tx - 2x^Ty + y^Ty
:param arr: (..., N, d) tensor
:returns: (..., N, N) tensor of pairwise distances between vectors in the second-to-last dim.
:rtype: tf.Tensor
"""
shape = tuple(arr.get_shape().as_list())
rank_ = len(shape)
N, d = shape[-2:]
# Build a prefix from the array without the indices we'll use later.
pref = string.ascii_lowercase[:rank_ - 2]
# Outer product of points (..., N, N)
xxT = tf.einsum('{0}ni,{0}mi->{0}nm'.format(pref), arr, arr)
# Inner product of points. (..., N)
xTx = tf.einsum('{0}ni,{0}ni->{0}n'.format(pref), arr, arr)
# (..., N, N) inner products tiled.
xTx_tile = tf.tile(xTx[..., None], (1,) * (rank_ - 1) + (N,))
# Build the permuter. (sigh, no tf.swapaxes yet)
permute = list(range(rank_))
permute[-2], permute[-1] = permute[-1], permute[-2]
# dists = (x^Tx - 2x^Ty + y^Tx)^(1/2). Note the axis swapping is necessary to 'pair' x^Tx and y^Ty
return tf.sqrt(xTx_tile - 2 * xxT + tf.transpose(xTx_tile, permute))