R中数据的多项式模型

时间:2017-05-04 15:47:50

标签: r data-analysis polynomial-math polynomials

Year <- c(1000,1500,1600,1700,1750,1800,1850,1900,1950,1955,1960,1965,1970,1975,1980,1985,1990,1995,2000,2005,2010,2015)

Africa <- c(70,86,114,106,106,107,111,133,229,254,285,322,366,416,478,550,632,720,814,920,1044,1186)

我怎样才能找到多年来的人口:1925年,1963年,1978年,1988年,1998年使用多项式线性回归。

1 个答案:

答案 0 :(得分:1)

以下是解决问题的起点。

Year <- c(1000,1500,1600,1700,1750,1800,1850,1900,1950,1955,1960,1965,
          1970,1975,1980,1985,1990,1995,2000,2005,2010,2015)
Africa <- c(70,86,114,106,106,107,111,133,229,254,285,322,366,416,478,550,
            632,720,814,920,1044,1186)
df <- data.frame(Year, Africa)

# Polynomial linear regression of order 5
model1 <- lm(Africa ~ poly(Year,5), data=df)
summary(model1)

###########
Call:
lm(formula = Africa ~ poly(Year, 5), data = df)

Residuals:
    Min      1Q  Median      3Q     Max 
-59.639 -27.119 -12.397   9.149  97.398 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)      411.32      10.12  40.643  < 2e-16 ***
poly(Year, 5)1   881.26      47.47  18.565 3.01e-12 ***
poly(Year, 5)2   768.50      47.47  16.190 2.42e-11 ***
poly(Year, 5)3   709.43      47.47  14.945 8.07e-11 ***
poly(Year, 5)4   628.45      47.47  13.239 4.89e-10 ***
poly(Year, 5)5   359.04      47.47   7.564 1.14e-06 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 47.47 on 16 degrees of freedom
Multiple R-squared:  0.9852,    Adjusted R-squared:  0.9805 
F-statistic: 212.5 on 5 and 16 DF,  p-value: 4.859e-14
#############

pred <- predict(model1)
plot(Year, Africa, type="o", xlab="Year", ylab="Africa")
lines(Year, pred, lwd=2, col="red")

enter image description here

上面估计的模型表明不适合岁月&lt;因此,最好只为1900年以后的数据估算一个模型。

# Polynomial linear regression of order 2
df2 <- subset(df,Year>1900)
model2 <- lm(Africa ~ poly(Year,2), data=df2)
summary(model2)

###########
Call:
lm(formula = Africa ~ poly(Year, 2), data = df2)

Residuals:
   Min     1Q Median     3Q    Max 
-9.267 -2.489 -0.011  3.334 12.482 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)     586.857      1.677  349.93  < 2e-16 ***
poly(Year, 2)1 1086.646      6.275  173.17  < 2e-16 ***
poly(Year, 2)2  245.687      6.275   39.15 3.65e-13 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.275 on 11 degrees of freedom
Multiple R-squared:  0.9997,    Adjusted R-squared:  0.9996 
F-statistic: 1.576e+04 on 2 and 11 DF,  p-value: < 2.2e-16
###########

df2$pred <- predict(model2)
plot(df2$Year, df2$Africa, type="o", xlab="Year", ylab="Africa")
lines(df2$Year, df2$pred, lwd=2, col="red")

第二种模式的合适性显然更好:

enter image description here

最后,我们得到了1925年,1963年,1978年,1988年,1998年的模型预测。

df3 <- data.frame(Year=c(1925, 1963, 1978, 1988, 1998))
df3$pred <- predict(model2, newdata=df3)
df3

  Year     pred
1 1925 286.4863
2 1963 301.1507
3 1978 451.7210
4 1988 597.6301
5 1998 779.9623