Keras 2.x - 获取图层权重

时间:2017-05-01 06:10:45

标签: python tensorflow deep-learning keras keras-layer

我使用的是Windows 10,Python 3.5和tensorflow 1.1.0。我有以下脚本:

man bash

我收到错误:import tensorflow as tf import tensorflow.contrib.keras.api.keras.backend as K from tensorflow.contrib.keras.api.keras.layers import Dense tf.reset_default_graph() init = tf.global_variables_initializer() sess = tf.Session() K.set_session(sess) # Keras will use this sesssion to initialize all variables input_x = tf.placeholder(tf.float32, [None, 10], name='input_x') dense1 = Dense(10, activation='relu')(input_x) sess.run(init) dense1.get_weights()

我做错了什么,如何获得AttributeError: 'Tensor' object has no attribute 'weights'的权重?我看过thisthis SO帖子,但我仍然无法使其发挥作用。

4 个答案:

答案 0 :(得分:32)

如果您想获得所有图层的权重和偏差,您只需使用:

for layer in model.layers: print(layer.get_config(), layer.get_weights())

这将打印所有相关信息。

如果您希望权重直接作为numpy数组返回,则可以使用:

first_layer_weights = model.layers[0].get_weights()[0]
first_layer_biases  = model.layers[0].get_weights()[1]
second_layer_weights = model.layers[1].get_weights()[0]
second_layer_biases  = model.layers[1].get_weights()[1]

答案 1 :(得分:16)

如果你写:

dense1

然后Dense(10, activation='relu')不是图层,而是图层的输出。图层为dense1 = Dense(10, activation='relu') y = dense1(input_x)

所以看起来你的意思是:

import tensorflow as tf
from tensorflow.contrib.keras import layers

input_x = tf.placeholder(tf.float32, [None, 10], name='input_x')    
dense1 = layers.Dense(10, activation='relu')
y = dense1(input_x)

weights = dense1.get_weights()

这是一个完整的代码段:

IF EXIST C:\IMGOK.TXT (BOOT.BAT) ELSE (LOADIMG.BAT)

答案 2 :(得分:2)

如果您想了解图层的权重和偏差随时间变化的情况,可以添加一个回调以在每个训练时期记录其值。

例如使用这样的模型

import numpy as np
model = Sequential([Dense(16, input_shape=(train_inp_s.shape[1:])), Dense(12), Dense(6), Dense(1)])

在拟合期间添加回调** kwarg:

gw = GetWeights()
model.fit(X, y, validation_split=0.15, epochs=10, batch_size=100, callbacks=[gw])

其中回调是由

定义的
class GetWeights(Callback):
    # Keras callback which collects values of weights and biases at each epoch
    def __init__(self):
        super(GetWeights, self).__init__()
        self.weight_dict = {}

    def on_epoch_end(self, epoch, logs=None):
        # this function runs at the end of each epoch

        # loop over each layer and get weights and biases
        for layer_i in range(len(self.model.layers)):
            w = self.model.layers[layer_i].get_weights()[0]
            b = self.model.layers[layer_i].get_weights()[1]
            print('Layer %s has weights of shape %s and biases of shape %s' %(
                layer_i, np.shape(w), np.shape(b)))

            # save all weights and biases inside a dictionary
            if epoch == 0:
                # create array to hold weights and biases
                self.weight_dict['w_'+str(layer_i+1)] = w
                self.weight_dict['b_'+str(layer_i+1)] = b
            else:
                # append new weights to previously-created weights array
                self.weight_dict['w_'+str(layer_i+1)] = np.dstack(
                    (self.weight_dict['w_'+str(layer_i+1)], w))
                # append new weights to previously-created weights array
                self.weight_dict['b_'+str(layer_i+1)] = np.dstack(
                    (self.weight_dict['b_'+str(layer_i+1)], b))

此回调将建立一个包含所有图层权重和偏差的字典,并用图层编号标记,因此您可以查看它们在训练模型时随时间的变化。您会注意到每个权重和偏差数组的形状取决于模型层的形状。为模型中的每一层保存一个权重数组和一个偏差数组。第三轴(深度)显示了它们随时间的变化。

在这里,我们使用了10个时期以及一个模型,该模型具有16、12、6和1个神经元层:

for key in gw.weight_dict:
    print(str(key) + ' shape: %s' %str(np.shape(gw.weight_dict[key])))

w_1 shape: (5, 16, 10)
b_1 shape: (1, 16, 10)
w_2 shape: (16, 12, 10)
b_2 shape: (1, 12, 10)
w_3 shape: (12, 6, 10)
b_3 shape: (1, 6, 10)
w_4 shape: (6, 1, 10)
b_4 shape: (1, 1, 10)

答案 3 :(得分:0)

如果图层索引号令人困惑,您也可以使用图层名称

重量

model.get_layer(<< layer_name >>).get_weights()[0]

偏见

model.get_layer(<< layer_name >>).get_weights()[1]