我只是将我的数据分成训练和测试集,我的计划是训练线性回归模型,并能够使用我的测试分割来检查性能是什么样的。
我目前的代码是:
import pandas as pd
import numpy as np
from sklearn import datasets, linear_model
import matplotlib.pyplot as plt
df = pd.read_csv('C:/Dataset.csv')
df['split'] = np.random.randn(df.shape[0], 1)
split = np.random.rand(len(df)) <= 0.75
training_set = df[split]
testing_set = df[~split]
我是否应该使用正确的方法从外部文件(例如.csv)绘制线性回归模型?
答案 0 :(得分:0)
由于你想使用scikit-learn,这是一种使用sklearn.linear_model.LinearRegression
的方法:
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
...
//all other stuff of app here
...
NavigationView navigationView = (NavigationView) findViewById(R.id.nav_view);
// for getting menu from navigationView
Menu menu = navigationView.getMenu();
// finding menuItem that you want to change
MenuItem nav_connection = menu.findItem(R.id.nav_connection);
// set new title to the MenuItem"change name from connection to logout"
nav_connection.setTitle("Logout");
// add NavigationItemSelectedListener to check the navigation clicks
navigationView.setNavigationItemSelectedListener(this);
}
根据您是否需要更多描述性输出,您还可以考虑使用from sklearn.linear_model import LinearRegression
model = LinearRegression()
X_train, y_train = training_set[x_vars], training_set[y_var]
X_test, y_test = testing_test[x_vars], testing_test[y_var]
model.fit(X_train, y_train)
predictions = model.predict(X_test)
进行线性回归。