动态编程与记忆耗时比蛮力方法更长

时间:2017-04-24 23:21:23

标签: algorithm performance c#-4.0 dynamic-programming

我最初使用Brute force解决了这个challenge并且它被接受了。我试图利用带有memoization的动态编程来减少O(2^n)的时间复杂度。

使用memoization的动态编程花费的时间比蛮力方法要长,并且我收到超出时间限制的错误消息。

蛮力方法代码。

public class Dummy
{
    private int answer = 0;
    private int numberCalled = 0;
    public bool doFindSum(ref int[] nums, int index, int current, int target)
    {
        numberCalled++;
        if (index + 1 == nums.Length)
        {
            if (current == target)
            {
                ++answer;
                return true;
            }
            else
            {
                return false;
            }
        }
        bool add = doFindSum(ref nums, index + 1, current + nums[index + 1], target);
        bool minus = doFindSum(ref nums, index + 1, current - nums[index + 1], target);
        return add || minus;
    }
    public int FindTargetSumWays(int[] nums, int S)
    {
        numberCalled = 0;
        doFindSum(ref nums, -1, 0, S);
        Console.WriteLine("Nums Called = {0}", numberCalled);
        return answer;
    }
}

使用记忆代码进行动态编程

public class DP
{
    private Dictionary<int, Dictionary<int, int>> dp;
    private int numberCalled = 0;
    public int doFindSum(ref int[] nums, int index, int current, int target)
    {
        numberCalled++;
        Dictionary<int, int> temp;
        if (dp.TryGetValue(index + 1, out temp))
        {
            int value;
            if (temp.TryGetValue(current, out value))
            {
                return value;
            }
        }
        if (index + 1 == nums.Length)
        {
            if (current == target)
            {
                if (!dp.ContainsKey(index + 1))
                {
                    dp.Add(index + 1, new Dictionary<int, int>() { { current, 1 } });
                    return 1;
                }
            }
            return 0;
        }
        int add = doFindSum(ref nums, index + 1, current + nums[index + 1], target);
        int minus = doFindSum(ref nums, index + 1, current - nums[index + 1], target);
        if ((!dp.ContainsKey(index + 1)) && (add + minus) > 0)
        {
            dp.Add(index + 1, new Dictionary<int, int>() { { current, add + minus } });
        }
        return add + minus;
    }
    public int FindTargetSumWays(int[] nums, int S)
    {
        numberCalled = 0;
        dp = new Dictionary<int, Dictionary<int, int>>(); // index , sum - count
        var answer =  doFindSum(ref nums, -1, 0, S);
        Console.WriteLine("Nums Called = {0}", numberCalled);
        return answer;
    }
}

代码驱动程序将度量编码为每种方法所花费的时间

public static void Main(string[] args)
        {

             var ip = new int[][] { new int [] { 0, 0, 0, 0, 0, 0, 0, 0, 1},
                                new int [] {6,44,30,25,8,26,34,22,10,18,34,8,0,32,13,48,29,41,16,30},
                                new int []{7,46,36,49,5,34,25,39,41,38,49,47,17,11,1,41,7,16,23,13 }
            };
        var target = new int[] { 1, 12, 3 };
        for (int i = 0; i < target.Length; i++)
        {
            var sw = Stopwatch.StartNew();
            var dummy = new Dummy();
            Console.WriteLine("Brute Force  answer => {0},  time => {1}", dummy.FindTargetSumWays(ip[i], target[i]), sw.ElapsedMilliseconds);
            sw.Restart();
            var dp = new DP();
            Console.WriteLine("DP with memo answer => {0},  time => {1}", dp.FindTargetSumWays(ip[i], target[i]), sw.ElapsedMilliseconds);
        }
        #endregion
        Console.ReadLine();
    }

对此的ouptut是

Nums Called = 1023
Brute Force  answer => 256,  time => 1
Nums Called = 19
DP with memo answer => 256,  time => 1
Nums Called = 2097151
Brute Force  answer => 6692,  time => 29
Nums Called = 2052849
DP with memo answer => 6692,  time => 187
Nums Called = 2097151
Brute Force  answer => 5756,  time => 28
Nums Called = 2036819
DP with memo answer => 5756,  time => 176

我不确定为什么动态方法的时间更加均匀,尽管此方法调用的doFindSum方法的次数较少。

2 个答案:

答案 0 :(得分:1)

我不太了解你的记忆代码,但对我来说似乎太复杂了。您所需要的只是记住一些数量的nums的所有可能总和的可能组合数。您一次添加一个数字并更新这些总和。你从零和的一种可能的组合开始。

public int FindTargetSumWays(int[] nums, int S)
{
    int numberCalled = 0;

    int sum = nums.Sum();
    if (Math.Abs(S) > sum) { return 0; }

    int[] arr = new int[2 * sum + 1];
    arr[0] = 1;
    int upperBound = 0;

    foreach (int num in nums)
    {
        int num2 = 2 * num;
        upperBound += num2;
        for (int i = upperBound; i >= num2; --i)
        {
            arr[i] += arr[i - num2];
            numberCalled++;
        }
    }

    Console.WriteLine("Nums Called = {0}", numberCalled);
    return arr[S + sum];
}

答案 1 :(得分:1)

难怪你的蛮力被接受了,因为在最坏的情况下它会是O(2 ^ SizeOfArray)。

在我们的情况下,

2 ^ 20的顺序,即约。 1e6操作的顺序,20是输入中数组大小的上限,如问题中所述。如果这很高,它可能会像DP解决方案那样超时,我们将会看到。

来到DP解决方案,我们的递归关系就像:

for all S in range(-MaxSum,MaxSum) and i in range(1,SizeOfArray)
     count[i][S] = count[ i-1 ][ S-arr[i] ] + count[ i-1 ][ S+arr[i] ] 

为简单起见,只关注这一部分:

count[i][S] = count[ i-1 ][ S-arr[i] ] + count[ i-1 ][ S+arr[i] ] 

它只取决于以前的状态。所以你可以在0-1背包问题的空间中优化它,因为问题完全取决于之前的状态。

运行时复杂度为O(2*SizeOfArray*MaxPossibleSum),在我们的例子中为O(2 * 20 * 1000),这绝对不如暴力解决方案。优化代码的空间复杂度为O(MaxSum)

现在关于代码问题:

在动态编程中,解决一个大问题应解决许多小问题,这些问题只能解决一次并重复使用多次。它被称为overlapping sub-problems属性。在这种情况下,您的代码似乎没有利用它。为什么?因为在我们的问题中,DP状态由两个变量组成&#34; index&#34;和&#34; current&#34;正如您所声明的那样,但您只是根据索引输入备忘录。这是问题所在。我在你的代码中做了一些修改。现在它的速度比蛮力的速度快。

using System;
using System.Collections.Generic;
using System.Diagnostics;
public class Dummy
{
    private int answer = 0;
    private int numberCalled = 0;
    public bool doFindSum(ref int[] nums, int index, int current, int target)
    {
        numberCalled++;
        if (index + 1 == nums.Length)
        {
            if (current == target)
            {
                ++answer;
                return true;
            }
            else
            {
                return false;
            }
        }
        bool add = doFindSum(ref nums, index + 1, current + nums[index + 1], target);
        bool minus = doFindSum(ref nums, index + 1, current - nums[index + 1], target);
        return add || minus;
    }
    public int FindTargetSumWays(int[] nums, int S)
    {
        numberCalled = 0;
        doFindSum(ref nums, -1, 0, S);
        Console.WriteLine("Nums Called = {0}", numberCalled);
        return answer;
    }
}

public class DP{
    private Dictionary<Tuple<int,int>,int> dp;
    private int numberCalled = 0;
    private int tp1=0;
    public int doFindSum(ref int[] nums, int index, int current, int target)
    {
        numberCalled++;
        Tuple<int,int> tp=new Tuple<int,int>(index+1,current);
        int value;
        if (dp.TryGetValue(tp, out value))
        {
                tp1++;
                return value;
        }
        if (index + 1 == nums.Length)
        {
            if (current == target)
            {
                if (!dp.ContainsKey(tp))
                {
                    dp.Add(tp, 1);
                    return 1;
                }
            }
            return 0;
        }
        int add = doFindSum(ref nums, index + 1, current + nums[index + 1], target);
        int minus = doFindSum(ref nums, index + 1, current - nums[index + 1], target);
        if ((!dp.ContainsKey(tp)))
        {
            dp.Add(tp, add + minus);
        }

        return add + minus;


    }
    public int FindTargetSumWays(int[] nums, int S)
    {
        numberCalled = 0;
        dp = new Dictionary<Tuple<int,int>,int>(); // index , sum - count
        var answer =  doFindSum(ref nums, -1, 0, S);
        Console.WriteLine("Nums Called = {0} tp={1}", numberCalled,tp1);
        return answer;
    }
}

public class sol{
public static void Main(string[] args)
        {

             var ip = new int[][] { new int [] { 0, 0, 0, 0, 0, 0, 0, 0, 1},
                                new int [] {6,44,30,25,8,26,34,22,10,18,34,8,0,32,13,48,29,41,16,30},
                                new int []{7,46,36,49,5,34,25,39,41,38,49,47,17,11,1,41,7,16,23,13,1,1,0,0,1,1,1,1,1,1 }
            };
        var target = new int[] { 1, 12, 3 };
        for (int i = 0; i < target.Length; i++)
        {
            var sw = Stopwatch.StartNew();
            var dummy = new Dummy();
          //  Console.WriteLine("Brute Force  answer => {0},  time => {1}", dummy.FindTargetSumWays(ip[i], target[i]), sw.ElapsedMilliseconds);
            sw.Restart();
            var dp = new DP();
            Console.WriteLine("DP with memo answer => {0},  time => {1}", dp.FindTargetSumWays(ip[i], target[i]), sw.ElapsedMilliseconds);
        }

        Console.ReadLine();
    }
}

我必须说今天我学到了一点C#。我之前没有任何经验。