有没有人有一个很好的算法来测量使用Swift(v3)增长时间序列数据的峰值?因此,在数据流入时检测峰值。
E.g。 smooth z-wave algorithm的Swift版本。该算法似乎是合适的。
我需要检测峰值,如下所示。数据包含正数和负数。输出应该是峰值的计数器,和/或特定样本的真/假。
样本数据集(最后一个系列的摘要):
lag=10,threshold=3,influence=0.2
更新:感谢Jean-Paul的initial Swift port。但不确定z-wave算法是否适用于此数据集。 lag=5,threshold=2.5,influence=0.7
适用于最后一系列数据集,但我无法找到完整数据集的组合。
问题:如果没有包含大量滞后的第一个数据样本,我需要每个峰值一个信号,算法需要进一步的工作才能提高效率。
E.g。完整数据集的结果,使用Python code,并且(例如)let samples = [-1.38, -0.97, -1.20, -2.06, -2.26, -0.99, 0.11, -0.47, -0.95, -2.61, -0.88, -0.74, -1.12, -1.19, -1.12, -1.04, -0.72, -1.21, -2.61, -1.41, -0.23, -0.27, -0.43, -1.77, -2.75, -0.61, -0.73, -1.53, -1.02, -1.14, -1.12, -1.06, -0.78, -0.72, -2.41, -1.55, -0.01, -0.44, -0.47, -2.02, -1.66, -0.43, -0.93, -1.51, -0.86, -1.06, -1.10, -0.88, -0.84, -1.26, -2.59, -0.92, 0.29, -0.50, -1.31, -2.40, -0.88, -0.56, -1.09, -1.14, -1.09, -0.90, -0.99, -0.84, -0.75, -2.59, -1.34, -0.08, -0.36, -0.50, -1.89, -1.60, -0.55, -0.78, -1.46, -0.96, -0.97, -1.18, -0.98, -1.10, -1.07, -1.06, -1.79, -1.78, -1.54, -1.25, -1.00, -0.46, -0.27, -0.20, -0.15, -0.13, -0.11, -0.13, -0.09, -0.09, -0.05, 0.02, 0.20, -0.31, -1.35, -0.03, 1.34, 0.52, 0.80, -0.91, -1.26, -0.10, -0.10, 0.53, 0.93, 0.60, -0.83, -1.87, -0.21, 1.26, 0.44, 0.86, 0.73, -2.05, -1.66, 0.31, 1.04, 0.72, 0.63, -0.01, -2.14, -0.48, 0.77, 0.63, 0.58, 0.66, -1.01, -1.28, 0.18, 0.44, 0.09, -0.27, -0.06, 0.06, -0.18, -0.01, -0.08, -0.07, -0.06, -0.06, -0.07, -0.07, -0.06, -0.05, -0.04, -0.03, -0.02, -0.02, -0.03, -0.03, -0.01, 0.01, 0.00, 0.01, 0.05, 0.12, 0.16, 0.25, 0.29, -0.16, -0.69, -1.05, -0.84, -0.54, -0.07, 0.46, 1.12, 1.05, 0.77, 0.68, 0.63, 0.39, -0.96, -1.61, -0.68, -0.14, -0.03, 0.22, 0.31, 0.15, -0.02, 0.11, 0.14, 0.00, 0.04, 0.18, 0.27, 0.14, -0.05, -0.03, -0.08, -0.41, -0.94, -1.03, -0.50, 0.02, 0.52, 1.10, 1.03, 0.79, 0.69, 0.55, -0.34, -1.17, -0.89, -0.54, -0.22, 0.37, 0.47, 0.39, 0.23, 0.00, -0.02, 0.05, 0.10, 0.12, 0.09, 0.05, -0.12, -0.50, -0.89, -0.89, -0.48, 0.00, 0.43, 1.03, 0.95, 0.67, 0.64, 0.47, -0.07, -0.85, -1.02, -0.73, -0.08, 0.38, 0.46, 0.32, 0.15, 0.01, -0.01, 0.09, 0.20, 0.23, 0.19, 0.12, -0.50, -1.17, -0.97, -0.12, 0.15, 0.70, 1.31, 0.97, 0.45, 0.27, -0.73, -1.00, -0.52, -0.27, 0.10, 0.33, 0.34, 0.23, 0.07, -0.04, -0.27, -0.24, 0.10, 0.21, 0.05, -0.07, 0.04, 0.21, 0.29, 0.16, -0.45, -1.13, -0.93, -0.28, 0.04, 0.72, 1.35, 1.05, 0.56, 0.43, 0.17, -0.59, -1.38, -0.76, 0.10, 0.44, 0.46, 0.35, 0.12, -0.07, -0.05, -0.01, -0.07, -0.04, 0.01, 0.01, 0.06, 0.02, -0.03, -0.05, 0.00, 0.01, -0.02, -0.03, -0.02, -0.01, 0.00, -0.01, 0.00, -0.01, 0.00, -0.01, -0.01, 0.00, 0.01, -0.01, -0.01, 0.00, 0.00, 0.01, 0.01, 0.01, 0.04, 0.06, 0.05, 0.05, 0.04, 0.03, 0.00, -0.12, -0.16, -0.09, -0.01, 0.14, 0.07, 0.06, 0.00, -0.03, 0.00, 0.06, 0.06, -0.04, -0.11, -0.02, 0.13, 0.18, 0.21, 0.01, -0.31, -0.92, -1.35, -0.62, 0.03, 0.78, 1.36, 1.07, 0.59, 0.75, 0.42, -1.65, -3.16, -0.97, 0.24, 1.44, 1.50, 0.84, 0.47, 0.56, 0.40, -1.50, -2.71, -1.22, 0.01, 1.20, 1.55, 0.92, 0.44, 0.66, 0.73, -0.43, -2.34, -2.28, -0.72, 0.36, 1.41, 1.56, 0.89, 0.54, 0.67, 0.39, -1.78, -2.75, -1.07, -0.07, 1.16, 1.65, 0.80, 0.47, 0.73, 0.86, -0.24, -1.52, -1.68, -0.39, 0.02, 0.38, 0.60, 0.49, 0.02, -0.42, -0.31, -0.01, 0.08, 0.00, -0.07, -0.05, -0.01, -0.02, -0.04, -0.05, -0.02, -0.01, -0.02, -0.02, -0.03, -0.05, -0.04, -0.03, -0.01, -0.01, 0.00, -0.01, 0.00, 0.01, 0.00, 0.00, 0.00, 0.01, 0.01, -0.01, -0.03, -0.02, -0.01, 0.00, 0.00, 0.00, -0.01, 0.01, 0.00, -0.01, 0.02, 0.07, 0.15, 0.28, 0.31, 0.08, -0.26, -0.54, -0.96, -1.08, -0.27, 0.01, 0.45, 1.18, 1.07, 0.71, 0.65, 0.20, -0.80, -1.30, -0.74, -0.24, 0.29, 0.47, 0.34, 0.15, 0.02, 0.03, -0.02, -0.16, -0.13, 0.05, 0.09, -0.01, -0.08, -0.06, 0.03, 0.13, 0.19, 0.23, 0.18, 0.10, -0.07, -0.44, -0.91, -1.05, -0.64, -0.08, 0.50, 1.12, 1.35, 0.89, 0.58, 0.54, -0.58, -1.27, -1.20, -0.48, 0.19, 0.62, 0.62, 0.37, -0.01, -0.35, -0.33, 0.07, 0.29, 0.10, -0.14, -0.10, 0.07, 0.07, 0.01, 0.03, 0.09, 0.20, 0.32, 0.26, -0.02, -0.32, -0.78, -1.25, -0.93, -0.16, 0.30, 0.88, 1.40, 1.14, 0.72, 0.48, -0.54, -1.21, -1.13, -0.41, 0.18, 0.51, 0.53, 0.36, 0.11, -0.03, -0.09, -0.28, -0.11, 0.11, 0.15, 0.04, -0.08, -0.04, 0.04, 0.09, 0.16, 0.26, 0.43, 0.09, -0.88, -1.46, -0.64, -0.16, 0.43, 1.37, 1.34, 0.84, 0.52, -0.17, -0.87, -1.22, -0.76, 0.03, 0.47, 0.60, 0.36, 0.04, -0.09, -0.03, 0.02, -0.04, 0.04, 0.12, 0.13, 0.19, 0.27, 0.31, 0.18, -0.42, -0.99, -1.13, -0.75, -0.22, 0.50, 1.42, 1.41, 0.98, 0.51, 0.29, -0.69, -1.59, -0.88, -0.13, 0.31, 0.49, 0.46, 0.30, 0.05, -0.08, -0.03, 0.01, -0.04, -0.06, 0.02, 0.03, 0.01, -0.02, 0.01, 0.04, 0.06, 0.04, 0.03, 0.02, 0.03, 0.03, 0.01, -0.01, 0.00, 0.02, 0.00, 0.02, 0.02, 0.02, -0.02, -0.01, 0.02, 0.02, 0.01, 0.02, 0.02, 0.02, 0.02, 0.04, 0.03, 0.01, 0.01, 0.02, 0.01, 0.01, 0.01, 0.02, 0.01, 0.00, 0.01, 0.01, 0.00, 0.00, 0.01, 0.00, 0.00, 0.01, 0.00, 0.02, 0.00, 0.00, 0.01, 0.01, 0.00, 0.00, 0.01, 0.01, 0.00, 0.00, 0.00, 0.01, 0.01, 0.00, 0.01, 0.00, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.01, 0.01, 0.01, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00]
缺少系列1和2的峰值,并在静默期显示太多误报:
完整数据集(应该产生25个峰值):
process = CrawlerProcess(settings)
process.crawl("myspider", request_headers='specified headers...')
process.start()
因此,我不确定z波算法是否适用于此类数据集。
答案 0 :(得分:12)
好吧,快点帮助你:这是将算法翻译成Swift:Demo in Swift Sandbox
警告:我绝不是一个快速的程序员,因此可能会出现错误!
另请注意,我已关闭负信号,至于OP的目的,我们只需要正信号。
Swift代码:
import Glibc // or Darwin/ Foundation/ Cocoa/ UIKit (depending on OS)
// Function to calculate the arithmetic mean
func arithmeticMean(array: [Double]) -> Double {
var total: Double = 0
for number in array {
total += number
}
return total / Double(array.count)
}
// Function to calculate the standard deviation
func standardDeviation(array: [Double]) -> Double
{
let length = Double(array.count)
let avg = array.reduce(0, {$0 + $1}) / length
let sumOfSquaredAvgDiff = array.map { pow($0 - avg, 2.0)}.reduce(0, {$0 + $1})
return sqrt(sumOfSquaredAvgDiff / length)
}
// Function to extract some range from an array
func subArray<T>(array: [T], s: Int, e: Int) -> [T] {
if e > array.count {
return []
}
return Array(array[s..<min(e, array.count)])
}
// Smooth z-score thresholding filter
func ThresholdingAlgo(y: [Double],lag: Int,threshold: Double,influence: Double) -> ([Int],[Double],[Double]) {
// Create arrays
var signals = Array(repeating: 0, count: y.count)
var filteredY = Array(repeating: 0.0, count: y.count)
var avgFilter = Array(repeating: 0.0, count: y.count)
var stdFilter = Array(repeating: 0.0, count: y.count)
// Initialise variables
for i in 0...lag-1 {
signals[i] = 0
filteredY[i] = y[i]
}
// Start filter
avgFilter[lag-1] = arithmeticMean(array: subArray(array: y, s: 0, e: lag-1))
stdFilter[lag-1] = standardDeviation(array: subArray(array: y, s: 0, e: lag-1))
for i in lag...y.count-1 {
if abs(y[i] - avgFilter[i-1]) > threshold*stdFilter[i-1] {
if y[i] > avgFilter[i-1] {
signals[i] = 1 // Positive signal
} else {
// Negative signals are turned off for this application
//signals[i] = -1 // Negative signal
}
filteredY[i] = influence*y[i] + (1-influence)*filteredY[i-1]
} else {
signals[i] = 0 // No signal
filteredY[i] = y[i]
}
// Adjust the filters
avgFilter[i] = arithmeticMean(array: subArray(array: filteredY, s: i-lag, e: i))
stdFilter[i] = standardDeviation(array: subArray(array: filteredY, s: i-lag, e: i))
}
return (signals,avgFilter,stdFilter)
}
// Demo
let samples = [0.01, -0.02, -0.02, 0.01, -0.01, -0.01, 0.00, 0.10, 0.31,
-0.10, -0.73, -0.68, 0.21, 1.22, 0.67, -0.59, -1.04, 0.06, 0.42, 0.07,
0.03, -0.18, 0.11, -0.06, -0.02, 0.16, 0.21, 0.03, -0.68, -0.89, 0.18,
1.31, 0.66, 0.07, -1.62, -0.16, 0.67, 0.19, -0.42, 0.23, -0.05, -0.01,
0.03, 0.06, 0.27, 0.15, -0.50, -1.18, 0.11, 1.30, 0.93, 0.16, -1.32,
-0.10, 0.55, 0.23, -0.03, -0.23, 0.16, -0.04, 0.01, 0.12, 0.35, -0.38,
-1.11, 0.07, 1.46, 0.61, -0.68, -1.16, 0.29, 0.54, -0.05, 0.02, -0.01,
0.12, 0.23, 0.29, -0.75, -0.95, 0.11, 1.51, 0.70, -0.30, -1.48, 0.13,
0.50, 0.18, -0.06, -0.01, -0.02, 0.03, -0.02, 0.06, 0.03, 0.03, 0.02,
-0.01, 0.01, 0.02, 0.01]
// Run filter
let (signals,avgFilter,stdFilter) = ThresholdingAlgo(y: samples, lag: 10, threshold: 3, influence: 0.2)
// Print output to console
print("\nOutput: \n ")
for i in 0...signals.count - 1 {
print("Data point \(i)\t\t sample: \(samples[i]) \t signal: \(signals[i])\n")
}
// Raw data for creating a plot in Excel
print("\n \n Raw data for creating a plot in Excel: \n ")
for i in 0...signals.count - 1 {
print("\(i+1)\t\(samples[i])\t\(signals[i])\t\(avgFilter[i])\t\(stdFilter[i])\n")
}
包含样本数据的结果(lag = 10
,threshold = 3
,influence = 0.2
):
您可以使用平均值lag
和标准差的不同值来提高算法的性能。 E.g:
// Smooth z-score thresholding filter
func ThresholdingAlgo(y: [Double], lagMean: Int, lagStd: Int, threshold: Double, influenceMean: Double, influenceStd: Double) -> ([Int],[Double],[Double]) {
// Create arrays
var signals = Array(repeating: 0, count: y.count)
var filteredYmean = Array(repeating: 0.0, count: y.count)
var filteredYstd = Array(repeating: 0.0, count: y.count)
var avgFilter = Array(repeating: 0.0, count: y.count)
var stdFilter = Array(repeating: 0.0, count: y.count)
// Initialise variables
for i in 0...lagMean-1 {
signals[i] = 0
filteredYmean[i] = y[i]
filteredYstd[i] = y[i]
}
// Start filter
avgFilter[lagMean-1] = arithmeticMean(array: subArray(array: y, s: 0, e: lagMean-1))
stdFilter[lagStd-1] = standardDeviation(array: subArray(array: y, s: 0, e: lagStd-1))
for i in max(lagMean,lagStd)...y.count-1 {
if abs(y[i] - avgFilter[i-1]) > threshold*stdFilter[i-1] {
if y[i] > avgFilter[i-1] {
signals[i] = 1 // Positive signal
} else {
signals[i] = -1 // Negative signal
}
filteredYmean[i] = influenceMean*y[i] + (1-influenceMean)*filteredYmean[i-1]
filteredYstd[i] = influenceStd*y[i] + (1-influenceStd)*filteredYstd[i-1]
} else {
signals[i] = 0 // No signal
filteredYmean[i] = y[i]
filteredYstd[i] = y[i]
}
// Adjust the filters
avgFilter[i] = arithmeticMean(array: subArray(array: filteredYmean, s: i-lagMean, e: i))
stdFilter[i] = standardDeviation(array: subArray(array: filteredYstd, s: i-lagStd, e: i))
}
return (signals,avgFilter,stdFilter)
}
然后使用例如let (signals,avgFilter,stdFilter) = ThresholdingAlgo(y: samples, lagMean: 10, lagStd: 100, threshold: 2, influenceMean: 0.5, influenceStd: 0.1)
可以提供更好的结果: