我必须用Matlab创建一个算法,用手的图像,可以通过凸起手指的数量和拇指的存在与否来知道手的形状。到目前为止,算法几乎已经完成,但我不知道我能做些什么才能找到代表手指的峰值。我们尝试了很多东西,但没有任何作用。我们的想法是找到突然增加的时间,但由于像素从未完全对齐,我们尝试过的任何工作都没有。有人有什么想法吗?这是迄今为止的代码。
他正在阅读的图片就是这个:
要知道手指是否相关,我们已经有了一个可能有效的想法......但我们需要先找到手指。
clear all
close all
image=imread('mao2.jpg');
YCBCR = rgb2ycbcr(image);
image=YCBCR;
cb = image(:,:,2);
cr = image(:,:,3);
imagek(:,1) = cb(:);
imagek(:,2) = cr(:);
imagek = double(imagek);
[IDX, C] = kmeans(imagek, 2, 'EmptyAction', 'singleton');
s=size(image);
IDX= uint8(IDX);
C2=round(C);
imageNew = zeros(s(1),s(2));
temp = reshape(IDX, [s(1) s(2)]);
for i = 1 : 1 : s(1)
for j = 1 : 1 : s(2)
imageNew(i,j,:) = C2(temp(i,j));
end
end
imageNew=uint8(imageNew);
[m,n]=size(imageNew);
for i=1:1:m
for j = 1:1:n
if(imageNew(i,j)>=127)
pretobranco(i,j)=0;
else
pretobranco(i,j)=1;
end
end
end
I2=imfill(pretobranco);
imshow(I2);
imwrite(I2, 'mao1trab.jpg');
[m,n]=size(I2);
B=edge(I2);
figure
imshow(B);
hold on;
stats=regionprops(I2,'BoundingBox');
rect=rectangle('position', [stats(1).BoundingBox(1), stats(1).BoundingBox(2), stats(1).BoundingBox(3), stats(1).BoundingBox(4)], 'EdgeColor', 'r');
stats(1).BoundingBox(1)
stats(1).BoundingBox(2)
stats(1).BoundingBox(3)
stats(1).BoundingBox(4)
figure
Bound = B( stats(1).BoundingBox(2): stats(1).BoundingBox(2)+stats(1).BoundingBox(4)-1, stats(1).BoundingBox(1):stats(1).BoundingBox(1)+stats(1).BoundingBox(3)-1);
imshow(Bound)
y1 = round(stats(1).BoundingBox(2))
y2 = round(stats(1).BoundingBox(2)+stats(1).BoundingBox(4)-1)
x1 = round(stats(1).BoundingBox(1))
x2 = round(stats(1).BoundingBox(1)+stats(1).BoundingBox(3)-1)
% Bounding box contida em imagem[M, N].
[M,N] = size(Bound)
vertical=0;
horizontal=0;
if M > N
vertical = 1 %imagem vertical
else
horizontal = 1 %imagem horizontal
end
%Find thumb
MaoLeft = 0;
MaoRight = 0;
nPixelsBrancos = 0;
if vertical==1
for i = x1:1:x2
for j= y1:1:y2
if I2(j,i) == 1
nPixelsBrancos = nPixelsBrancos + 1; %Numero de pixels da mão
end
end
end
for i=x1:1:x1+30
for j=y1:1:y2
if I2(j,i) == 1
MaoLeft = MaoLeft + 1; %Number of pixels of the hand between the 30 first colums
end
end
end
for i=x2-30:1:x2
for j=y1:1:y2
if I2(j,1) == 1
MaoRight = MaoRight + 1; %Number of pixels of the hand between the 30 last colums
end
end
end
TaxaBrancoLeft = MaoLeft/nPixelsBrancos
TaxaBrancoRight = MaoRight/nPixelsBrancos
if TaxaBrancoLeft <= (7/100)
if TaxaBrancoRight <= (7/100)
Thumb = 0 %Thumb in both borders is defined as no Thumb.
else
ThumbEsquerdo = 1 %Thumb on left
end
end
if TaxaBrancoRight <= (7/100) && TaxaBrancoLeft >= (7/100)
ThumbDireito = 1 %Thumb on right
end
end
if horizontal==1
for i = x1:1:x2
for j= y1:y2
if I2(i,j) == 1
nPixelsBrancos = nPixelsBrancos + 1; %Numero de pixels da mão
end
end
end
for i=x1:1:x2
for j=y1:1:y1+30
if I2(i,j) == 1
MaoLeft = MaoLeft + 1; %Numero de pixels da mão entre as 30 primeiras colunas
end
end
end
for i=x1:1:x2
for j=y2-30:1:y2
if I2(j,1) == 1
MaoRight = MaoRight + 1; %Numero de pixels da mão entre as 30 ultimas colunas
end
end
end
TaxaBrancoLeft = MaoLeft/nPixelsBrancos
TaxaBrancoRight = MaoRight/nPixelsBrancos
if TaxaBrancoLeft <= (7/100)
if TaxaBrancoRight <= (7/100)
Thumb = 0 %Polegar nas duas bordas. Definimos como sem polegar.
else
ThumbEsquerdo = 1 %Polegar na borda esquerda
end
end
if TaxaBrancoRight <= (7/100) && TaxaBrancoLeft >= (7/100)
ThumbDireito = 1 %Polegar na borda direita
end
end
figure
imshow(I2);
%detecção da centroid
Ibw = im2bw(I2);
Ilabel = bwlabel(Ibw);
stat = regionprops(Ilabel,'centroid');
figure
imshow(I2); hold on;
for x = 1: numel(stat)
plot(stat(x).Centroid(1),stat(x).Centroid(2),'ro');
end
centroid = [stat(x).Centroid(1) stat(x).Centroid(2)] %coordenadas x e y da centroid
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
答案 0 :(得分:2)
看起来像一个有趣的问题,所以我试了一下。基本上,您首先使用Sobel滤镜来查找图像中的边缘(稍微去噪后)。然后清理生成的线条,使用它们分离手的二进制掩模内的区域,使用分水岭变换找到手腕,一些距离变换以找到其他标记,然后移除手掌。你留下的是每个手指和拇指的不同区域。您可以轻松地计算这些区域,或者找到他们指向的方向,或者您喜欢的任何方式。
imgURL = 'https://encrypted-tbn2.gstatic.com/imgs?q=tbn:ANd9GcRQsqJtlrOnSbJNTnj35Z0uG9BXsecX2AXn1vV0YDKodq-zSuqnnQ';
imgIn=imread(imgURL);
gaussfilt = fspecial('gaussian', 3, .5); % Blur starting image
blurImg = imfilter(double(img(:,:,1)), gaussfilt);
edgeImg = edge(blurImg, 'sobel'); % Use Sobel edge filter to pick out contours of hand + fingers
% Clean up contours
edgeImg = bwmorph(edgeImg, 'close', 1);
edgeImg = bwmorph(edgeImg, 'thin', Inf);
% Clean up rogue spots in corners
edgeImg([2 end-1], 2) = 0;
edgeImg([2 end-1], end-1) = 0;
% Extend lines to edge of image (correct for 'close' operation above
edgeImg([1 end],:) = edgeImg([2 end-1],:);
edgeImg(:, [1 end]) = edgeImg(:, [2 end-1]);
% Remove all but the longest line
regs = regionprops(edgeImg, 'Area', 'PixelIdxList');
regs(vertcat(regs.Area) ~= max(vertcat(regs.Area))) = [];
lineImg = false(size(edgeImg, 1), size(edgeImg, 2));
lineImg(regs.PixelIdxList) = 1;
fillImg = edgeImg;
% Close in wrist
if any(fillImg(1,:))
fillImg(1,:) = 1;
end
if any(fillImg(end,:))
fillImg(end,:) = 1;
end
if any(fillImg(:,1))
fillImg(:,1) = 1;
end
if any(fillImg(:,end))
fillImg(:,end) = 1;
end
fillImg = imfill(fillImg, 'holes');
fillImg([1 end], :) = 0;
fillImg(:, [1 end]) = 0;
fillImg([1 end],:) = fillImg([2 end-1],:);
fillImg(:, [1 end]) = fillImg(:, [2 end-1]);
% Start segmenting out hand + fingers
handBin = fillImg;
% Set lines in above image to 0 to separate closely-spaced fingers
handBin(lineImg) = 0;
% Erode these lines to make fingers a bit more separate
handBin = bwmorph(handBin, 'erode', 1);
% Segment out just hand (remove wrist)
distImg = bwdist(~handBin);
[cDx, cDy] = find(distImg == max(distImg(:)));
midWrist = distImg;
midWrist = max(midWrist(:)) - midWrist;
midWrist(distImg == 0) = Inf;
wristWatershed = watershed(imerode(midWrist, strel('disk', 10)));
whichRegion = wristWatershed(cDx, cDy);
handBin(wristWatershed ~= whichRegion) = 0;
regs = regionprops(handBin, 'Area', 'PixelIdxList');
regs(vertcat(regs.Area) ~= max(vertcat(regs.Area))) = [];
handOnly = zeros(size(handBin, 1), size(handBin, 2));
handOnly(regs.PixelIdxList) = 1;
% Find radius of circle around palm centroid that excludes wrist and splits
% fingers into separate regions.
% This is estimated as D = 1/3 * [(Centroid->Fingertip) + 2*(Centroid->Wrist)]
% Find Centroid-> Wrist distance
dist2w = wristWatershed ~= whichRegion;
dist2w = bwdist(dist2w);
distToWrist = dist2w(cDx, cDy);
% Find Centroid-> Fingertip distance
dist2FE = zeros(size(handOnly, 1), size(handOnly, 2));
dist2FE(cDx, cDy) = 1;
dist2FE = bwdist(dist2FE).*handOnly;
distToFingerEnd = max(dist2FE(:));
circRad = mean([distToFingerEnd, distToWrist, distToWrist]); % Estimage circle diameter
% Draw circle
X = bsxfun(@plus,(1:size(handOnly, 1))',zeros(1,size(handOnly, 2)));
Y = bsxfun(@plus,(1:size(handOnly, 2)),zeros(size(handOnly, 1),1));
B = sqrt(sum(bsxfun(@minus,cat(3,X,Y),reshape([cDx, cDy],1,1,[])).^2,3))<=circRad;
% Cut out binary mask within circle
handOnly(B) = 0;
% Label separate regions, where each now corresponds to a separate digit
fingerCount = bwlabel(handOnly);
% Display overlay image
figure()
imshow(imgIn)
hold on
overlayImg = imshow(label2rgb(fingerCount, 'jet', 'k'));
set(overlayImg, 'AlphaData', 0.5);
hold off