考虑以下简单表达语言:
Inductive Exp : Set :=
| EConst : nat -> Exp
| EVar : nat -> Exp
| EFun : nat -> list Exp -> Exp.
及其良好的谓词:
Definition Env := list nat.
Inductive WF (env : Env) : Exp -> Prop :=
| WFConst : forall n, WF env (EConst n)
| WFVar : forall n, In n env -> WF env (EVar n)
| WFFun : forall n es, In n env ->
Forall (WF env) es ->
WF env (EFun n es).
基本上表明必须在环境中定义每个变量和函数符号。现在,我想定义一个函数来说明WF
谓词的可判定性:
Definition WFDec (env : Env) : forall e, {WF env e} + {~ WF env e}.
refine (fix wfdec e : {WF env e} + {~ WF env e} :=
match e as e' return e = e' -> {WF env e'} + {~ WF env e'} with
| EConst n => fun _ => left _ _
| EVar n => fun _ =>
match in_dec eq_nat_dec n env with
| left _ _ => left _ _
| right _ _ => right _ _
end
| EFun n es => fun _ =>
match in_dec eq_nat_dec n env with
| left _ _ => _
| right _ _ => right _ _
end
end (eq_refl e)) ; clear wfdec ; subst ; eauto.
问题是如何声明WF
谓词是否适用EFun
案例中的表达式列表。我的明显猜测是:
...
match Forall_dec (WF env) wfdec es with
...
但是Coq拒绝了它,认为递归调用wfdec
是不正确的。我的问题是:是否有可能在不改变表达式表示的情况下定义这种良好谓词的可判定性?
完整的工作代码位于以下gist。
答案 0 :(得分:6)
问题是Forall_dec
在标准库中定义为不透明(即使用Qed
而不是Defined
)。因此,Coq不知道使用wfdec
是有效的。
您问题的直接解决方案是重新定义Forall_dec
以使其透明。您可以通过打印Coq生成的证明术语并将其粘贴到源文件中来完成此操作。我在这里添加了gist一个完整的解决方案。
毋庸置疑,这种方法适用于臃肿,难以阅读和难以维护的代码。正如ejgallego在他的回答中指出的那样,在这种情况下你最好的选择可能是定义一个决定WF
的布尔函数,并使用它来代替WFDec
。正如他所说,他的方法唯一的问题是你需要将自己的归纳原理编写到Exp
,以证明布尔版本确实决定了归纳定义。 Adam Chlipala的CPDT在归纳类型上有chapter,它给出了这种归纳原理的一个例子;只是寻找“嵌套的归纳类型”。
答案 1 :(得分:5)
作为时间变通方法,您可以将wf
定义为:
Definition wf (env : Env) := fix wf (e : Exp) : bool :=
match e with
| EConst _ => true
| EVar v => v \in env
| EFun v l => [&& v \in env & all wf l]
end.
这通常更方便使用。但是,由于Coq为exp
生成错误的归纳原则,因此该定义将毫无用处,因为它没有检测到列表。我通常做的是手动修复感应原理,但这很昂贵。例如:
From Coq Require Import List.
From mathcomp Require Import all_ssreflect.
Set Implicit Arguments.
Unset Printing Implicit Defensive.
Import Prenex Implicits.
Section ReflectMorph.
Lemma and_MR P Q b c : reflect P b -> reflect Q c -> reflect (P /\ Q) (b && c).
Proof. by move=> h1 h2; apply: (iffP andP) => -[/h1 ? /h2 ?]. Qed.
Lemma or_MR P Q b c : reflect P b -> reflect Q c -> reflect (P \/ Q) (b || c).
Proof. by move=> h1 h2; apply: (iffP orP) => -[/h1|/h2]; auto. Qed.
End ReflectMorph.
Section IN.
Variables (X : eqType).
Lemma InP (x : X) l : reflect (In x l) (x \in l).
Proof.
elim: l => [|y l ihl]; first by constructor 2.
by apply: or_MR; rewrite // eq_sym; exact: eqP.
Qed.
End IN.
Section FORALL.
Variables (X : Type) (P : X -> Prop).
Variables (p : X -> bool).
Lemma Forall_inv x l : Forall P (x :: l) -> P x /\ Forall P l.
Proof. by move=> U; inversion U. Qed.
Lemma ForallP l : (forall x, In x l -> reflect (P x) (p x)) -> reflect (Forall P l) (all p l).
Proof.
elim: l => [|x l hp ihl /= ]; first by constructor.
have/hp {hp}hp : forall x : X, In x l -> reflect (P x) (p x).
by move=> y y_in; apply: ihl; right.
have {ihl} ihl := ihl _ (or_introl erefl).
by apply: (iffP andP) => [|/Forall_inv] [] /ihl hx /hp hall; constructor.
Qed.
End FORALL.
Inductive Exp : Type :=
| EConst : nat -> Exp
| EVar : nat -> Exp
| EFun : nat -> list Exp -> Exp.
Lemma Exp_rect_list (P : Exp -> Type) :
(forall n : nat, P (EConst n)) ->
(forall n : nat, P (EVar n)) ->
(forall (n : nat) (l : seq Exp), (forall x, In x l -> P x) -> P (EFun n l)) ->
forall e : Exp, P e.
Admitted.
Definition Env := list nat.
Definition wf (env : Env) := fix wf (e : Exp) : bool :=
match e with
| EConst _ => true
| EVar v => v \in env
| EFun v l => [&& v \in env & all wf l]
end.
Inductive WF (env : Env) : Exp -> Prop :=
| WFConst : forall n, WF env (EConst n)
| WFVar : forall n, In n env -> WF env (EVar n)
| WFFun : forall n es, In n env ->
Forall (WF env) es ->
WF env (EFun n es).
Lemma WF_inv env e (wf : WF env e ) :
match e with
| EConst n => True
| EVar n => In n env
| EFun n es => In n env /\ Forall (WF env) es
end.
Proof. by case: e wf => // [n|n l] H; inversion H. Qed.
Lemma wfP env e : reflect (WF env e) (wf env e).
Proof.
elim/Exp_rect_list: e => [n|n|n l ihe] /=; try repeat constructor.
by apply: (iffP idP) => [/InP|/WF_inv/InP //]; constructor.
apply: (iffP andP) => [[/InP ? /ForallP H]|/WF_inv[/InP ? /ForallP]].
by constructor => //; exact: H.
by auto.
Qed.