这是我的数据集示例:
Consumer_num | billed_units
29 | 984
29 | 1244
29 | 2323
29 | 1232
29 | 1150
30 | 3222
30 | 1444
30 | 2124
我想按consumer_num分组,然后将每个组的所有值(billed_units)添加到新列中。所以我需要的输出:
Consumer_num | month 1 | month 2 | month 3 | month 4 | month 5
29 | 984 | 1244 | 2323 | 1232 | 1150
30 | 3222 | 1444 | 2124 | NaN | NaN
这是我到目前为止所做的:
group = df.groupby('consumer_num')['billed_units'].unique()
group[group.apply(lambda x: len(x)>1)]
df = group.to_frame()
print df
输出:
Consumer_num | billed_units
29 | [984,1244,2323,1232,1150]
30 | [3222,1444,2124]
我不知道我的方法是否正确。如果它是正确的,那么我想知道如何将每个消费者的billed_units分开,然后添加到我所需输出中显示的新列中。或者有更好的方法来实现我所需的输出?
答案 0 :(得分:2)
解决方案
c = 'Consumer_num'
m = 'month {}'.format
df.set_index(
[c, df.groupby(c).cumcount() + 1]
).billed_units.unstack().rename(columns=m).reset_index()
Consumer_num month 1 month 2 month 3 month 4 month 5
0 29 984.0 1244.0 2323.0 1232.0 1150.0
1 30 3222.0 1444.0 2124.0 NaN NaN
如何运作
'Consumer_num'
放入变量c
m
pd.MultiIndex
groupby
和cumcount
创建unstack
级别unstack
对评论的回复
限制月数的一种方法是使用iloc
。以下限制我们为3个月。你可以调整为先行.Nans应该照顾好自己。
c = 'Consumer_num'
m = 'month {}'.format
df.set_index(
[c, df.groupby(c).cumcount() + 1]
).billed_units.unstack().rename(columns=m).iloc[:, :3].reset_index()
# ^..........^
Consumer_num month 1 month 2 month 3
0 29 984.0 1244.0 2323.0
1 30 3222.0 1444.0 2124.0
或者你可以预处理
c = 'Consumer_num'
m = 'month {}'.format
d1 = df.groupby(c).head(3) # pre-process and take just first 3
d1.set_index(
[c, d1.groupby(c).cumcount() + 1]
).billed_units.unstack().rename(columns=m).reset_index()
答案 1 :(得分:0)
您可以使用pivot
之类的
In [70]: dfm = df.assign(m=df.groupby('Consumer_num').cumcount().add(1))
In [71]: dfm.pivot('Consumer_num', 'm', 'billed_units').add_prefix('month ')
Out[71]:
m month 1 month 2 month 3 month 4 month 5
Consumer_num
29 984.0 1244.0 2323.0 1232.0 1150.0
30 3222.0 1444.0 2124.0 NaN NaN
详细
In [75]: df
Out[75]:
Consumer_num billed_units
0 29 984
1 29 1244
2 29 2323
3 29 1232
4 29 1150
5 30 3222
6 30 1444
7 30 2124
In [76]: dfm
Out[76]:
Consumer_num billed_units m
0 29 984 1
1 29 1244 2
2 29 2323 3
3 29 1232 4
4 29 1150 5
5 30 3222 1
6 30 1444 2
7 30 2124 3