为什么scipy.optimize.linprog会返回不满足约束的解决方案?

时间:2017-03-29 23:40:57

标签: python scipy linear-programming

我做错了什么还是错误?

c = np.array([-1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.])
A_ub = np.array([[   1., -724.,  911., -551., -555., -896.,  478.,  -80., -293.],
       [   1.,  566.,   42.,  937.,  233.,  883.,  392., -909.,   57.],
       [   1., -208., -894.,  539.,  321.,  532., -924.,  942.,   55.],
       [   1.,  857., -859.,   83.,  462., -265., -971.,  826.,  482.],
       [   1.,  314., -424.,  245., -424.,  194., -443., -104., -429.],
       [   1.,  540.,  679.,  361.,  149., -827.,  876.,  633.,  302.],
       [   0.,   -1.,   -0.,   -0.,   -0.,   -0.,   -0.,   -0.,   -0.],
       [   0.,   -0.,   -1.,   -0.,   -0.,   -0.,   -0.,   -0.,   -0.],
       [   0.,   -0.,   -0.,   -1.,   -0.,   -0.,   -0.,   -0.,   -0.],
       [   0.,   -0.,   -0.,   -0.,   -1.,   -0.,   -0.,   -0.,   -0.],
       [   0.,   -0.,   -0.,   -0.,   -0.,   -1.,   -0.,   -0.,   -0.],
       [   0.,   -0.,   -0.,   -0.,   -0.,   -0.,   -1.,   -0.,   -0.],
       [   0.,   -0.,   -0.,   -0.,   -0.,   -0.,   -0.,   -1.,   -0.],
       [   0.,   -0.,   -0.,   -0.,   -0.,   -0.,   -0.,   -0.,   -1.],
       [   0.,    1.,    0.,    0.,    0.,    0.,    0.,    0.,    0.],
       [   0.,    0.,    1.,    0.,    0.,    0.,    0.,    0.,    0.],
       [   0.,    0.,    0.,    1.,    0.,    0.,    0.,    0.,    0.],
       [   0.,    0.,    0.,    0.,    1.,    0.,    0.,    0.,    0.],
       [   0.,    0.,    0.,    0.,    0.,    1.,    0.,    0.,    0.],
       [   0.,    0.,    0.,    0.,    0.,    0.,    1.,    0.,    0.],
       [   0.,    0.,    0.,    0.,    0.,    0.,    0.,    1.,    0.],
       [   0.,    0.,    0.,    0.,    0.,    0.,    0.,    0.,    1.]])
b_ub = np.array([ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0., 
                 0., 0.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.])
A_eq = np.array([[ 0.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.]])
b_eq = np.array([[ 1.]])
bounds = [(None, None), (None, None), (None, None), (None, None), (None, None), 
         (None, None), (None, None), (None, None), (None, None)]

soln = scipy.optimize.linprog(c, A_ub, b_ub, A_eq, b_eq, bounds)
print(soln)
print(A_ub.dot(soln['x']) <= b_ub)
print(A_ub.dot(soln['x']) - b_ub)
print(abs(A_eq.dot(soln['x']) - b_eq))](url)

输出

     fun: 39.866871820032244
 message: 'Optimization terminated successfully.'
     nit: 19
   slack: array([   0.   ,    0.   ,    0.   ,    0.   ,  365.161,    0.   ,
          0.   ,    0.   ,    0.   ,    0.   ,    0.167,    0.61 ,
          0.115,    0.518,    1.   ,    1.   ,    1.   ,    1.   ,
          0.833,    0.39 ,    0.885,    0.482])
  status: 0
 success: True
       x: array([-39.812,  -0.281,  -0.625,   0.   ,  -0.031,  -0.125,   0.625,
         0.312,   0.406])

[ True  True False False  True False False False  True False False  True
  True  True  True  True  True  True  True  True  True  True]
[-121.5   -358.812  240.125  121.781 -357.781  350.656    0.281    0.625
    0.       0.031    0.125   -0.625   -0.312   -0.406   -1.281   -1.625
   -1.      -1.031   -1.125   -0.375   -0.688   -0.594]
[[ 0.719]]

A_ub的中间部分必须清楚解决方案必须满足soln['x'][1:] > 0,然而,显然不满意!

我做错了吗?

Python 3.6 SciPy的== 0.18.1

1 个答案:

答案 0 :(得分:2)

是的,它看起来像个错误。我通常建议人们使用替代scipy的linprog,因为:

  • 糟糕的健壮性
  • 表现不佳(特别是在大型稀疏问题上)
  • 似乎不再被维护;尽管有未决问题,但进展不大

目前有一个基于内部点solver in development for scipy,它正确地解决了这个问题。当然,您也可以使用更好的替代方案(例如通过cvxpy)。

以下是一些代码,其中显示了cvxpy的默认求解器(针对这类问题; ECOS可以解决更广泛的问题!)ECOS以及尚未合并的IPM求解器解决它,而linprog-simplex挣扎。请注意,由于缺少method='interior-point',代码将无法在vanilla-scipy上运行:

import numpy as np
from scipy.optimize import linprog

c = np.array([-1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.])
A_ub = np.array([[   1., -724.,  911., -551., -555., -896.,  478.,  -80., -293.],
       [   1.,  566.,   42.,  937.,  233.,  883.,  392., -909.,   57.],
       [   1., -208., -894.,  539.,  321.,  532., -924.,  942.,   55.],
       [   1.,  857., -859.,   83.,  462., -265., -971.,  826.,  482.],
       [   1.,  314., -424.,  245., -424.,  194., -443., -104., -429.],
       [   1.,  540.,  679.,  361.,  149., -827.,  876.,  633.,  302.],
       [   0.,   -1.,   -0.,   -0.,   -0.,   -0.,   -0.,   -0.,   -0.],
       [   0.,   -0.,   -1.,   -0.,   -0.,   -0.,   -0.,   -0.,   -0.],
       [   0.,   -0.,   -0.,   -1.,   -0.,   -0.,   -0.,   -0.,   -0.],
       [   0.,   -0.,   -0.,   -0.,   -1.,   -0.,   -0.,   -0.,   -0.],
       [   0.,   -0.,   -0.,   -0.,   -0.,   -1.,   -0.,   -0.,   -0.],
       [   0.,   -0.,   -0.,   -0.,   -0.,   -0.,   -1.,   -0.,   -0.],
       [   0.,   -0.,   -0.,   -0.,   -0.,   -0.,   -0.,   -1.,   -0.],
       [   0.,   -0.,   -0.,   -0.,   -0.,   -0.,   -0.,   -0.,   -1.],
       [   0.,    1.,    0.,    0.,    0.,    0.,    0.,    0.,    0.],
       [   0.,    0.,    1.,    0.,    0.,    0.,    0.,    0.,    0.],
       [   0.,    0.,    0.,    1.,    0.,    0.,    0.,    0.,    0.],
       [   0.,    0.,    0.,    0.,    1.,    0.,    0.,    0.,    0.],
       [   0.,    0.,    0.,    0.,    0.,    1.,    0.,    0.,    0.],
       [   0.,    0.,    0.,    0.,    0.,    0.,    1.,    0.,    0.],
       [   0.,    0.,    0.,    0.,    0.,    0.,    0.,    1.,    0.],
       [   0.,    0.,    0.,    0.,    0.,    0.,    0.,    0.,    1.]])
b_ub = np.array([ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
                 0., 0.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.])
A_eq = np.array([[ 0.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.]])
b_eq = np.array([[ 1.]])
bounds = [(None, None), (None, None), (None, None), (None, None), (None, None),
         (None, None), (None, None), (None, None), (None, None)]

soln = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method='simplex')
print('linprog: ', soln)

soln = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method='interior-point')
print('linprog IPM: ', soln)

from cvxpy import *
x = Variable(A_eq.shape[1])
constraints = []
constraints.append(A_ub*x <= b_ub)
constraints.append(A_eq*x == b_eq)
objective = Minimize(c*x)
problem = Problem(objective, constraints)
problem.solve(verbose=True)
print(np.round(x.value, 2))
print(problem.value)

输出:

linprog:       fun: 39.866871820032244
 message: 'Optimization terminated successfully.'
     nit: 19
   slack: array([  0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
         0.00000000e+00,   3.65161351e+02,   0.00000000e+00,
         0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
         0.00000000e+00,   1.66922982e-01,   6.10104031e-01,
         1.14953670e-01,   5.18298274e-01,   1.00000000e+00,
         1.00000000e+00,   1.00000000e+00,   1.00000000e+00,
         8.33077018e-01,   3.89895969e-01,   8.85046330e-01,
         4.81701726e-01])
  status: 0
 success: True
       x: array([ -3.98125000e+01,  -2.81250000e-01,  -6.25000000e-01,
         0.00000000e+00,  -3.12500000e-02,  -1.25000000e-01,
         6.25000000e-01,   3.12500000e-01,   4.06250000e-01])
linprog IPM:       con: array([ -3.93646007e-08])
     fun: 108.56853369114262
 message: 'Optimization terminated successfully.'
     nit: 9
   slack: array([  1.23442489e+02,  -1.13909794e-05,  -7.46066462e-07,
         3.12539380e+02,   2.20799190e+02,  -1.41898576e-05,
         2.48742446e-09,   3.71114180e-01,   1.07937459e-09,
         1.33093066e-08,   3.70892271e-01,   2.03637625e-09,
         2.57993546e-01,   2.36290348e-08,   9.99999998e-01,
         6.28885820e-01,   9.99999999e-01,   9.99999987e-01,
         6.29107729e-01,   9.99999998e-01,   7.42006454e-01,
         9.99999976e-01])
  status: 0
 success: True
       x: array([ -1.08568534e+02,   2.48742446e-09,   3.71114180e-01,
         1.07937459e-09,   1.33093066e-08,   3.70892271e-01,
         2.03637625e-09,   2.57993546e-01,   2.36290348e-08])

ECOS 2.0.4 - (C) embotech GmbH, Zurich Switzerland, 2012-15. Web: www.embotech.com/ECOS

It     pcost       dcost      gap   pres   dres    k/t    mu     step   sigma     IR    |   BT
 0  +2.934e+01  -6.533e+02  +2e+03  3e-01  5e-01  1e+00  8e+01    ---    ---    1  1  - |  -  - 
 1  +9.527e+01  -1.952e+02  +9e+02  1e-01  2e-01  8e+00  4e+01  0.6128  2e-01   1  1  1 |  0  0
 2  +9.281e+01  -1.256e+01  +3e+02  4e-02  6e-02  5e+00  1e+01  0.6888  1e-01   1  1  1 |  0  0
 3  +1.004e+02  +6.363e+01  +1e+02  2e-02  2e-02  2e+00  5e+00  0.7367  1e-01   1  1  1 |  0  0
 4  +1.075e+02  +9.684e+01  +3e+01  5e-03  6e-03  9e-01  1e+00  0.8307  1e-01   1  1  1 |  0  0
 5  +1.086e+02  +1.084e+02  +4e-01  6e-05  7e-05  1e-02  2e-02  0.9872  1e-04   1  1  1 |  0  0
 6  +1.086e+02  +1.086e+02  +5e-03  7e-07  8e-07  1e-04  2e-04  0.9890  1e-04   1  1  1 |  0  0
 7  +1.086e+02  +1.086e+02  +5e-05  8e-09  9e-09  1e-06  2e-06  0.9890  1e-04   1  0  0 |  0  0
 8  +1.086e+02  +1.086e+02  +6e-07  8e-11  1e-10  2e-08  3e-08  0.9890  1e-04   1  0  0 |  0  0

OPTIMAL (within feastol=9.6e-11, reltol=5.2e-09, abstol=5.6e-07).
Runtime: 0.000424 seconds.

[[-108.57]
 [  -0.  ]
 [   0.37]
 [  -0.  ]
 [   0.  ]
 [   0.37]
 [  -0.  ]
 [   0.26]
 [   0.  ]]
108.56853545568384